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Abstract

A binary de Bruijn sequence has the property that every n-tuple is distinct

on a given period of length 2". An efficient algorithm to generate a class of classi-

cal de Bruijn sequences is given based upon the distance between cycles within the

Good - de Bruijn digraph. The de Bruijn property on binary sequences is shown

to be a randomness property of the ZERO and ONE run sequences. Utilizing this

randomness we find additional new structure in de Bruijn sequences. We analyze

binary sequences that are not de Bruijn but instead possess the sufficient structure

so that every distinct binary n-tuple can be systematically "combed" out of the se-

quence. These complete or nonclassical de Bruijn sequences are a generalization of

the well-known de Bruijn cycle.

Our investigation focuses on binary sequences, called double Eulerian cycles,

that define a cycle along a graph (digraph) visiting each edge (arc) exactly twice. A

new algorithm to generate a class of double Eulerian cycles on graphs and digraphs

is found. Double Eulerian cycles along the binary Good - de Bruijn digraph are

partitioned by the run structure of their defining sequences. This partition allows for

a statistical analysis to determine the relative size of the set of complete cycles defined
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by the sequences we study. A measure that categorizes double Eulerian cycles along

graphs (digraphs) by the distance between the two visitations of each edge (arc) is

provided. An algorithm to generate double Eulerian cycles of minimum measure is

given.
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Table of Sy ibols and Notation

This section consists of a list of frequently used mathematical symbols and notation.

SETS SYMBOL MEANING

x E S x is a member of S

x S x is a not a member of S

S cT S is a proper subset of T

S C T S is a subset of T

0 The empty set

A n B Intersection of sets A and B

AUB Union of sets A and B

A - B Difference of sets A and B
(relative complement of B in A)

IAI Cardinality of A

V x T Cartesian product of sets V and T

(sl, ... , SO) n-tuple

{s1,... ,sn} List of elements in a set

INTEGERS

Z+ Set of positive integers

alb a divides b

a mod b Remainder when a is divided by b

a - b mod m a is congruent to b modulo m
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FUNCTIONS

[Xj The greatest integer less than or equal to x

rx] The least integer greater than or equal to x

0 Euler's totient function

max(x, y) Maximum of x and y

min(x, y) Minimum of x and y

COUNTING

P(n, r) Number of r-permutations of a set with n elements

C(n, r) Number of r-combinations of a set with n elements
n n! °

C(n; ni, n 2,... n) Multinomial coefficient (,,n 2 ..... ,) ,l!,2!..--,.!

(n) Binomial coefficient

GRAPHS AND DIGRAPHS

(x, y) Directed edge or arc

Xy Undirected edge

IIGIIo Number of distinct walks in the graph G
that traverse each edge exactly p times

d.(x, y) Distance from vertex x to vertex y on a cycle

dD(X, y) Directed distance from vertex x to vertex y

de(x, e) Edge-distance from vertex x to edge e

d(x, y) Distance from vertex x to vertex y

d(x, V) Distance from vertex x to the set of vertices V
where d(x, V) = minJEv d(z, v)

d.(x, E) Edge-distance from vertex x to the set of edges E
where de(x, E) = mineEE de(x, e)
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M(G) Median of the graph G

EM(G) Edge-median of the graph G

s, Status of vertex v

es, Edge-status of vertex v

a-edges Single-edges, i.e., edges that have been currently
traversed once during a walk along a graph
or digraph

out(x) Outdegree of vertex x

in(x) Indegree of vertex x

p,(F) Posture for a vertex v in the factor F

MF(D) Mean of the digraph D for the given factor F

B. The Good-de Bruijn digraph of order 2n

D(.) Graph D with each edge having multiplicity of A

Bn-(k+l) Graph isomorphic to B,,-(,+,)

(a) The cycle to which the edge a belongs

(a)C Set of vertices on the cycle (a)

y(a). The set of vertices vi E (a), for which
d(y, vi) = d.(y, (a))

(a)R The representative vertex on a cycle (a)

W-f The set of walks that traverses each edge
of a graph exactly y times

W. The set of walks beginning at vertex v

W2. The set of double Eulerian walks beginning
at vertex v

G = (V, E) Graph G with vertex set V and edge set E

D = (V, A) Digraph D with vertex set V and arc set A
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BOOLEAN ALGEGRA

Bn• Binary n-tuple

R Conjugate of x

x/ Conjugate of x

X Complement of x

E Addition modulo 2

GENERAL

FSR, Feedback shift register of span n

PC&• Pure cycle register of span n

S"n The set of de Bruijn sequences of length 2n

9. The set of balanced binary sequences of length 2n

Sn The set of binary sequences of length 2n with
the run property

Run of ZEROs A subsequence of consecutive O's that is
preceeded and followed by a 1.

Run of ONEs A subsequence of consecutive l's that is
preceeded and followed by a 0.

T(C, S) A sequence of n-tuples extracted from a
2n-long sequence, S, by an (1, n)-comb, C

rDn(k) The repetition number of the element k
in the multiset D,

log Logarithm to base 2

TTIR Abbreviation for: to the immediate right

Assignment operator

Depiction of a (7,4)-comb specified by

fx(Si, Sv+1,..., Si+e) = (S,, Si+, S,+2, S,+6)
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I. PERSPECTIVE

"Begin at the beginning," the King said, very gravely, "and go on till you come
to the end: then stop."

Alice's Adventures in Wonderland, Chapter 12

A. OVERVIEW

The advent of modern high-speed communication hardware creates a need for

high-speed techniques to generate random-like sequences. Most digital computers and

many communication systems handle information in binary form. One of the sim-

plest and most efficient devices for generating deterministic, random looking binary

sequences is the shift register. Every periodic binary sequence is obtainable from

some suitably constructed shift register. This generality allows great versatility in

shift register applications. The applications for shift register sequences include secure

data transmission [Ref. 1], robot path planning [Ref. 2], multiple address coding

[Ref. 3], error correcting codes [Ref. 4], radar range measuring [Ref. 31, and random

number generation [Ref. 5].

It is well-known that a (2" - 1)-long sequence, i.e., a binary sequence of length

2" - 1, containing all the non-zero binary n-tuples can be obtained from an n-span

shift register by means of a feedback function consisting entirely of modulo 2 additions

[Ref. 6]. Such functions are called linear. A great deal of theory has been developed

about linear feedback shift registers. Finite fields provide the underlying mathemat-



ical foundation for the linear feedback shift register. Once we remove the restriction

that the feedback function be linear, allowing products of variables, the fundamen-

tal structure of the shift rigister changes dramatically. As we expand from linear

to nonlinear feedback functions the number of maximum length binary shift register

sequences of degree n, 2'-long sequences with distinct n-tuples, increases from less

than 2, to exactly 1--. Unlike in the linear case, for a general nonlinear feedback

function it is often true that the best way to determine the resulting sequence is to

exhaustively construct the state tree, since there are few algebraic approaches for

the nonlinear analysis. Many fundamental questions remain to be answered for the

nonlinear problem. There is a need for expanded techniques and tools.

In a sense, no finite length sequence is ever truly random. In particular, no

sequence that depends on a rather small number of parameters, such as the feedback

connections of a feedback shift register, can be considered truly random. These

sequences, however, have the balance and run randomness properties expected of

random sequences as defined by Golomb [Ref. 61. We consider only sequences of

finite length. Furthermore, the end of the sequence is considered to be contiguous

with the beginning of the sequence, hence, sequences and cycles can be considered to

be equivalent.

B. CURRENT RESEARCH

An important problem currently under consideration with respect to nonlinear

sequences is that of finding a broad class of functions that yield near-maximal length
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cycles. Ford [Ref. 7], Lempel [Ref. 8], and Fredricksen [Ref. 9], among others, have

provided methods for constructing de Bruijn cycles and others have expanded upon

their ideas. Additionally, classes of functions that yield pairs of cycles of length 2-1

are examined by Kibler [Ref. 10]. But here, as in so many other facets of the analysis

of nonlinear functions, even though the structure suggests some underlying means of

classifying these functions, the discriminating factor has proven to be elusive.

A de Bruijn cycle (or de Bruijn sequence) of length 2"n has the property that ev-

ery n-tuple appears exactly once on a given period. For some applications it might not

be necessary that the n bits of interest lie consecutively along the sequence. Our work

examines an apparently unexplored area with respect to de Bruijn cycles. Although

novel, this research has parallels to the current direction of study to find classes of

de Bruijn cycles. We analyze sequences of length 2" that are not de Bruijn but

that have been found to possess sufficient structure so that every distinct binary

n-tuple can be systematically "combed" out of the sequence - i.e., every n-tuple can

be found appearing at the successive positions in a subsequence. We find that in this

way the properties that make de Bruijn cycles so attractive can be extracted from

sequences that apparently do not contain each n-tuple.

C. DESCRIPTION OF THE THESIS

A simple method to extract n-tuples from a sequence is to cycle the sequence

through the pure cycling register of length 2n (PCR2.) [Ref. 6], recording the bits of n

arbitrary (not necessarily consecutive) but fixed registers at each shift of the PCR2 ..

3



More precisely, we define a functional '(f1 , f2,. .. , f2.), whose domain consists of the

2 n functions (fl,f12,..J.,•.). The function f! projects the I bits (8,,s,+i,...,S,+1- ),

I > n, from a 2"`-long binary sequence (S1, S2,..., S2-) to a binary n-tuple. We restrict

each of the functions fi in Y to be the projection from B1 to B" defined by

A;(si, S,+1?,.. •, S,+1-)= (;, IShI,..•., 1-in_2, S;+1- I)I

where i < ji < ." < in-2 < i+ I- 1.

It is useful to visualize each fi as an I-long window containing n viewing

stations or as a comb of length I with n surviving teeth, denoted as an (:,,n)-comb.

It should be noted that an (1, n)-comb is always to be applied to a sequence of length

2" since our intent is to extract 2" unique n-tuples.

The set of all 2"-long balanced sequences, i.e., those with an equal number of

l's and O's, is denoted by S,,. If S = 0001010001101111, then S is an element of

S4 that is clearly not de Bruijn, i.e., 4-tuples are repeated. Hence, the (4,4)-comb

consisting of 4 consecutive teeth is not a comb for S. The (8,4)-comb specified by

fi(s9, ,S+l, ,i+2, 9i+3, v-9 i '+5, 6'.+7) = (,, si+1, S9+2, Si+7),

however, generates the following sequence of distinct 4-tuples from S: (0000, 0010,

0101, 1011, 0100, 1001, 0001, 0011, 0111, 1100, 1010, 0110, 1111, 1110, 1101, 1000).

It is convenient to depict combs by a symbol that portrays the teeth of the

comb in a fairly obvious way. For example, the (8,4)-comb specified above by

fi,(,, Si+,84+2, 8,+3, 8,+4, tSi+5, -9 8,+7) = (,, 8,+9, 8,42, 8+47)

4



is represented by the symbol . It can easily be verified that S has the following

(1, 4)-combs: 111*._1, 1`..161, I.I....I...I, 1*0*�*9*0., 1*10 ....0. (Note that these combs are

distinct combs and are not cyclic shifts of each other.)

We see that a sequence can have several associated combs. Some sequences,

however, have exactly one comb while other sequences have no combs at all. Clearly,

a sequence of length 2" composed of a de Bruijn cycle of length 2 "-1 concatenated

with itself cannot have a comb since, for each i,

f(Si, 5411... , S4 1 -1) = f .Si+l-1+2--1).

For the same reason any sequence of length 2" possessing a periodic part of period d,

where d is a proper divisor of 2", cannot have a comb.

Fundamentally, the search for sequences and combs can proceed in either of

two ways: either by finding a sequence satisfying a particular comb or by finding a

comb that satisfies a particular sequence. In either case, the appropriate sequences

are necessarily of length 2" and are therefore generated by polynomials, over the field

of two elements, of the form fk(x) = (x + 1)k for some 2n-1 < k _< 2n [Ref. 61. Only

those sequences from this set that are balanced need be considered.

Occasionally, we categorize an (1, n)-comb as an m-comb if at most m of its n

teeth are consecutive. We establish a one-to-one correspondence between sequences

and walks along a graph or digraph. We show that a sequence of length 2n with an

(n - k) comb, 1 < k < n, traverses each arc in the digraph •-(+1) exactly 2k times.

(The digraph 0 -B.(k+l) is isomorphic to the Good - de Bruijn digraph Bn-(k+l).) This

5



property has far-reaching implica ,ns. We find that walks traversing each arc of the

Good - de Bruijn digraph provide a common thread throughout each of the following

chapters. The set of walks that visit each edge (arc) in a graph (digraph) exactly y

times is denoted by W-.

The primary goal of the research presented here is to provide a better under-

standing of the de Bruijn property of distinct n-tuples, binary de Bruijn cycles, and

the Good - de Bruijn digraph. The thesis consists of 7 chapters:

Chapter II: The purpose of this chapter is to make the thesis self-contained.

We provide a concise introduction to graph theory, feedback shift registers, and

their resulting sequences. This introduction is suited for the analysis of double

Eulerian cycles, binary de Bruijn cycles, and the Good - de Bruijn digraph.

Apart from basic definitions, Chapter II also introduces definitions that are not

in common use but proved to be convenient in the nonlinear theory of periodic

sequences. We introduce some initial analysis on double Eulerian cycles, cycles

that traverse each edge (arc) along a graph (digraph) exactly twice.

Chapter III: We investigate sequences called complete cycles or nonclassical

de Bruijn cycles. A complete cycle of length 2" has the property that each of

the possible 2n binary n-tuples lies along a fixed pattern or (1, n)-comb of the

sequence. The analysis of these complete cycles is primarily concerned with

combs where n- I of the bits of interest lie consecutively along the sequence. A

characterization of a class of complete cycles is made in terms of the walk they

6



define along an appropriate Good - de Bruijn digraph. A statistical analysis

is made to determine the number of complete cycles defined by a particular

class of sequences.

Chapter IV: To analyze (n-1)-combs, i.e., those with n -I consecutive teeth,

some essential theory on double Eulerian cycles along graphs and digraphs is

developed. We define a measure that categorizes double Eulerian cycles by

a function of the two visitations along each edge in the traversed graph. In

essence, the measure describes where particular n-tuples are located on the

sequence in some rough sense. This measure parallels the discrete logarithm

problem of finite fields (Ref. 11] that forms the foundation of some current pub-

lic key cryptography systems. A conjecture is given for the minimum measure

(or value) of a Good - de Bruijn digraph.

Chapter V: We describe how the de Bruijn property of distinct n-tuples re-

sults from a randomness property of the run lengths in a binary sequence. The

run structure of the sequences defining an Eulerian or double Eulerian cycle

along the Good - de Bruijn digraph is completely determined. A statistical

analysis shows that the property of containing distinct n-tuples in a binary de

Bruijn cycle of length 2" is equivalent to the Expected Value Property for run

lengths in a random binary sequence.

7



Chapter VI: The concepts derived in Chapter IV are used to develop a new

algorithm to generate classical de Bruijn cycles. The algorithm is based on

the edge-factors of the Good - de Bruijn digraph and the distance between

cycles. The edge-factors of a graph are found to be an important element to

determine the minimum measure of a graph or digraph.

Chapter VII: Here we summarize the results of the thesis. Directions for

further research are identified and open problems are discussed.

In summary, the ensuing chapters emerge from the development of combing

sequences in Chapter III. More importantly, each result is inspired by the desire to

gain a greater understanding of nonlinear binary sequences in general.

D. HISTORICAL NOTE

PROBLEM: Given m symbols (which, without Loss of generality, we take to be

0, 1, ... , m-i) and a positive integer n, find a sequence of these symbols having

minimum length, that when arranged as a cycle, contains every sequence of n

consecutive symbols.

A solution to this problem is a de Bruijn cycle of length (m)'. In 1951 van

Aardenne-Ehrenfest and de Bruijn [Ref. 12] showed that de Bruijn cycles exist for

all m > 2 and n > 1. In fact the de Bruijn cycle problem has been independently

rediscovered many times.
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The problem of finding de Bruijn cycles for m = 2 became well-known through

de Bruijn's paper [Ref. 13], where the number of solutions was found to be 22"- -n.

de Bruijn [Ref. 14], however, credits Stanley for discovering that the problem had been

proposed and solved half a century earlier in the French problem journal l'Tnterm diaire

des Mathimaticiens in 1894. The problem was proposed by de Rivi~re in 1894 and

solved by F13 - Sainte-Marie [Ref. 15] that same year. Flye Sainte-Marie found the

same number, 22n-I-n , and his method of solution was paralleled by de Bruijn. Three

years later, Mantel [Ref. 16] found a solution whenever m is prime using an algebraic

method. After 1897, the problem was apparently entirely forgotten until 1934, when

it was reintroduced by Martin [Ref. 17]. Martin approached the problem combina-

torially and proved the existence nf de Bruijn cycles for all m and n by creating an

algorithm to construct such cycles. A decade after Martin, de Bruijn [Ref. 13] and

Good [Ref. 18] independently rediscovered and solved the problem for the case m = 2

using graph theoretic and group theoretic concepts.

The corresponding problem for m > 2 symbols was first raised and solved

in 1951 [Ref. 12]. The number of solutions was found to be (m!)(m)n'-(m)-n using

methods of determinants on the adjacency matrix representing the Good - de Bruijn

digraph.

Subsequently, algorithms to generate some or all of the de Bruijn cycles of

length 2' have been repeatedly uncovered. It is a palatial problem that will undoubt-

edly lure attempts to unravel it again and again.
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II. DEFINITIONS AND NOTATION

"...But do cats eat bats, I wonder?" And here Alice began to get rather
sleepy, and went on saying to herself, in a dreamy sort of way, "Do cats eat
bats? Do cats eat bats?" and sometimes "Do bats eat cats?" for you see, as
she couldn't answer either question, it didn't much matter which way she put
it.

Alice's adventures in Wonderland, Chapter 1

A. INTRODUCTION

Before describing double Eulerian cycles, de Bruijn cycles, and the methods

and techniques we need to address in our work, it is necessary to provide applicable

definitions and notation. A detailed description of linear and nonlinear shift register

sequences appears in Golomb [Ref. 6]. A text on graph theory such as Bondy and

Murty [Ref. 19], provides a thorough discussion on the relevant material on graph

theory. The reader who is thoroughly familiar with the vocabulary and cqncepts of

graph theory and de Bruijn cycles may wish to skip most of this chapter.

B. GRAPHS

A graph G consists of a set V = {vI, V2,... , vp}, of elements called vertices

(or nodes) and a set E = {el, e2,..., e,} of unordered pairs of vertices called edges.

The edge between vertex x and vertex y is written as zy or yx. The graph G is said

to have order p and size q. We write G = (V, E) and say V is the vertex set and E

is the edge set.
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Edges of the form e = vvi are called loops. A graph without loops is called

simple if it also has no pair of vertices forming more than one edge. A graph is finite

if its order is finite. We will consider only graphs that are finite, but not necessarily

simple.

Edge e = vivj is said to be incident to the vertices vi and vj. Similarly, vi and

vj are incident to the edge e. Two vertices that are incident to a common edge are

adjacent, as are two edges that are incident to a common vertex. A set of vertices

(edges) is independent if the vertices (edges) are mutually nonadjacent. The graph

C = G - {v} is the graph G with the vertex v and its incident edges removed.

A subgraph of a graph G = (V, E) is a graph H = (V', E') where V' C V and

E' C_ E. Suppose that V' is a nonempty subset of V. The subgraph of G whose vertex

set is V' and whose edge set is all of those edges of G for which both incident vertices

are in V' is called the subgraph of G induced by V'. Suppose that E' is a nonempty

subset of E. The subgraph of G whose vertex set is the set of all vertices incident to

the edges of E' and whose edge set is E' is called the subgraph of G induced by E'.

A walk W = (vI,el,v 2,e 2,.. .,ek-z,.1,Vk) in G is an alternating sequence of

vertices and incident edges, beginning and ending on a vertex of G. A walk may

have repeated edges and repeated vertices. The length of a walk is the number of

edges in the sequence. A walk can also be identified by merely listing the sequence

of adjacent edges or, in a graph without multiple edges, by listing the sequence of

adjacent vertices.

11



Simple Graph Graph Graph

Figure 1. Graphs and a simple graph

A walk is said to be closed if the initial and terminal vertices are the same.

A closed walk is called a cycle. When it is not important to designate the initial

vertex of a cycle, the terminal vertex will typically not be listed in the sequence of

adjacent vertices. Using this notation, any cyclic shift of a cycle is considered to be

the same cycle. Further, this allows a distance to be defined between the vertices

(edges) of a simple cycle. The distance between the vertices vi and vi on a simple

cycle C = (vo, vi,... , vp-. 1) is denoted

d,(vi,vi) = min((i - j) mod p,(j -i) mod p).

Similarly, the distance between the edges ei and ej on a simple cycle C = (eo, e1,... ep-)

is

d.(ei, ej) = min ((i - j) mod p,(j - i) mod p).

A walk with distinct edges is called a trail. If the vertices of a trail are distinct,

the walk is called a path. A closed path is called a simple cycle. If

(V1 ,eiv 2 ,e2 ,. e... ek-I, Vk)

12
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VJ2 e 2 V•3

Figure 2. Cycles

is a walk, v, is the initial vertex, the set of interior vertices is {v 2, v3,. V-2, V._.},

and Vk is the terminal vertex of the walk. That is, all of the vertices of the walk

that occur somewhere other than as the initial and terminal vertices of the walk are

interior. The set of all walks along a graph beginning at vertex v is denoted by W,.

The set of all walks in which each of the edges appears exactly -y times is denoted by

W,. Additionally, the set of all walks in W, where each of the edges appears exactly

twice is denoted by )4'2,.

A cycle C of period p contains p edges and we write p'I = p. If C is a cycle,

but not a simple cycle, then C is said to be reducible. Evidently, a cycle is reducible

if it is not a closed path. The closed path (vI,v 2 ,v3,v 4,v5, vs) in Figure 2 is both a

cycle and a simple cycle. The closed trail C = (v2, ve, v3, vs, vG, v1 ) is a cycle but not

a simple cycle, i.e., C is reducible. The cycle C can be reduced to the two simple

cycles (v2, V6 , vI) and (v6, v3 , vs).

The degree of a vertex v in a graph, denoted deg(v), is the number of edges

incident to v. A loop at a vertex contributes two to the degree of that vertex.
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A graph G is said to be connected if, for all i,j, there exists a path connecting

vi and v3 . A graph that is not connected is said to be disconnected.

A trail in a graph G is called Eulerian provided it contains every edge of G

exactly once. An Eulerian cycle in G is a cycle that includes each edge of G exactly

once. A walk in a graph G is called double Eulerian if it contains every edge in G

exactly twice. A path in a graph G is called Hamiltonian provided that it contains

every vertex of G exactly once. A Hamiltonian cycle in G is a cycle that includes

each vertex of G exactly once.

The following theorem is a well-known result in graph theory. See, for example,

Bondy and Murty [Ref. 19].

Theorem 11.1 A connected graph G has a closed Eulerian trail if and only if

the degree of each vertex is even.

A partition of a set X is a family {XiIi E I g Z+} of non-empty subsets of X

such that X = U Xi and the family is pairwise disjoint.
jEl

A factor of a connected graph G = (V, E) is a set of cycles in G that induces a

partition of V. In a similar manner, an edge-factor of a connected graph G is a set of

cycles in G that induces a partition of E. The set of cycles {(vI, v2, V6), (v3, v4, v5)} is a

factor of the graph G in Figure 2. The set of cycles {(v1 , v2, vs), (v3, v4, v5), (v2, v5, v6, v3)}

is an edge-factor of G.
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G: Vi e i

V2 e2 V3
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H: vi eg ~ eo A: vl eI B: elo

Vt2 L3 VJ2 V3

Figure 3. A graph with a reducible cycle

The subgraph induced by the edges of a reducible cycle has a nontrivial edge-

factor. For example, let the edge-factor F of G in Figure 3 consist of the cycles

CI = (v2, 1) V3, Vt, re, vI) and C2 = (V2, V3, V4, v5). The subgraph H of G in Figure 3

is induced by the edges of C1 . Since C' is reducible, H has a nontrivial edge-factor con-

sisting of the cycles A = (v2, v6, v,) and B = (r6, V3, V5). The set of cycles {C 2, A, B}

is an edge-factor of G, denoted by FAB.

A tree is a connected acyclic graph, i.e., the path connecting any two vertices

is unique. Any vertex in a tree can be distinguished as the root of the tree. Every

path from the root has a last or terminal vertex. The height of a rooted tree is the

length of the longest path from the root.
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Two graphs GI = (VI, EI) and G2 = (V2, E 2) are isomorphic if there is a

bijection f from VI to V2 such that f(x)f(yi) is an edge of G2 if and only if xy is an

edge of G1 .

The distance, d(x, y), between two vertices x and y in a connected graph G is

the minimum length of a path joining them. The edge-distance, d,(v, e), between a

vertex v and an edge e = xy in G is

d.(v,e) = min(d(v,x),d(v,y)).

Given a subset X C V of vertices in G = (V, E), the distance between a vertex v E V

and X is

d(v,X) = mind(v,x). (I1.1)
ZEX

Similarly, given a subset Y C E of edges, the edge-distance from v to Y is

d.(v,,Y) = minnd.(v, y). (11.2)
YEY

Let G = (V, E) be a connected graph. The status, s,,, of a vertex v in G is

defined by s,, = d(v, n). The median M(G) of a graph G is the set of vertices
nEV

of minimum status. In a similar manner, the edge-status, esa, of a vertex v E G is

defined as es,, = 1 d.(v, e). The edge-median EM(G) of a graph G is the set of
eEE

vertices of minimum edge-status.

For example, in Figure 4 for the graph G we find s,, = 9, s,1 = 8, es,1 = 4,

ea. = 4, M(G) = {v 2}, and EM(G) = {vi,v 2}.
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G:A J1 V2

Figure 4. A graph for which M(G) 6 EM(G)

Figure 5. Digraphs

C. DIGRAPHS

A digraph (or directed graph) D = (V, A) has a set V of elements called vertices

and a set A g V x V of ordered pairs of (not necessarily distinct) vertices called arcs.

We think of the arc a = (z, y) as leaving x and entering y, that is, directed from x to

y; x is the initial vertex of a and y its terminal vertex. A digraph may contain each

of the arcs (z, y) and (y, x) as well as loops of the form (z, x). A loop (z, x) enters

and exits the same vertex x. A general digraph may also include multiple arcs.

17



A vertex of the digraph D has two associated degrees. The outdegree of a

vertex v, denoted out(v), is the number of arcs for which v is the initial vertex. The

indegree of v, denoted in(v), is the number of arcs for which v is the terminal vertex.

The loop (x, x) contributes 1 to each of in(x) and out(z).

The definitions of walk, path, trail, factor, and cycle carry over from graphs to

digraphs in a fairly obvious way. For example, a directed walk in a digraph D = (V, A)

is a sequence of vertices and arcs, (vI,alV,2,... ,a- 1 ,Vk), with the property that

(vi, vi+j) E A for 1 < i < k - 1. A directed walk is a directed path if all of its vertices

are distinct, a directed trail if all its arcs are distinct, and a closed directed walk if the

initial and terminal vertices are the same. A closed directed walk is a cycle; a closed

directed path is a simple cycle.

For any graph G = (V, E) we obtain a digraph D = (V, A) by giving each edge

zy E E an orientation, that is, by replacing zy with either (z, y) or (y, x). Such a

digraph D is called an orientation of G. A graph has 21E1 orientations if it has no

loops and 2 1E1-k orientations if G has k loops. Conversely, given a digraph D = (V, A)

we can remove the direction of its arcs thereby obtaining a graph G = (V, E). Such a

graph is called the underlying graph of G. A digraph D has exactly one underlying

graph, denoted by GD.

A weak digraph is one that has a connected underlying graph. A digraph

D = (V, A) is said to be strong provided that for each pair of distinct vertices z, y E V

there is a directed walk from z to y and a directed walk from y to z (i.e., there is a

18
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B 2  V2  _ _ _ *V 3
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Figure 6. An illustration of an edge-factor of a directed qraph

directed cycle that includes y and x). A directed trail in a digraph D = (V, A) is called

Eulerian provided that it contains every arc of A exactly once. A directed path is said

to be Hamiltonian if it contains every vertex of V exactly once. A Hamiltonian cycle

is one that contains every vertex of V exactly once, where the initial and terminal

vertices may be considered the same.

A factor of a weak digraph D = (V, A) is a set of cycles in D that induce a

partition of V. Similarly, an edge-factor of a weak digraph D is a set of cycles in D

that induce a partition of A.

As an example, the set of cycles {(vI), (v2, v3), (v4)} in Figure 6 is a factor

of graph B2. The set of cycles F = {(v 1 ), (v1 , v2, v3 ), (v2, v4, v3 ), (v4)} constitute an

edge-factor of B2.

For vertices z and y in a strong digraph D, the directed distance dD(x, y) is

the length of a shortest directed path from x to y in D. The directed distance from

any vertex to itself is zero, i.e., dD(x, z) = 0. Unless the digraph D is symmetric, it
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is not generally the case that dD(X, y) = dD(y, x) for all vertices x, y in V. Therefore,

directed distance is not in general a metric. The distance, d(x, y), between two vertices

x and y in a weak directed D digraph is the minimum length of a path joining them

in the underlying graph of D.

Given an edge-factor F of a digraph D = (V, A), the posture, p•(F), of a vertex

v E V is defined by

p.(F) = Y 21CId.(v,,C), (11.3)
CEF

where ICI is the number of edges in the cycle C, d.(v, C) = minde(v, x) in GD, the
rec

underlying graph of D, and the summation is over all of the cycles of the edge-factor.

The mean for the factor F of a directed graph D, denoted by MF(D), is defined

to be the set of vertices with minimum posture for the edge-factor F. As an example,

for the edge-factor F of B2 we find p,,,(F) = 10, p,,2(F) = 4, and MF(B 2 ) = {v 2,v 3}.

D. GOOD - DE BRUIJN GRAPHS AND DE BRUIJN

CYCLES

The original formulation of the de Bruijn cycle problem for m = 2 can be

viewed as finding the number of Hamiltonian paths in an appropriate directed graph.

This graphical interpretation is very useful in understanding the properties of

de Bruijn cycles.

A binary feedback shift register of span n (FSR,,) is a collection of n storage

devices (xo, x1, ... , x,,- 1), each capable of holding an element of B = {0, 1}, together

with a feedback function f (zo, xt,...., z,-), taking on a value of 0 or 1, computed
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from the contents of the n storage devices. The contents of the register at time t,

regarded as a binary n-tuple or a binary vector, are called the state of the register. A

FSR, has 2' possible states, namely the elements of the set Bn of all binary n-tuples.

The feedback function f(x) of the FSR,, where x = (xox,.. .X,zn- 1 ), induces a

mapping F: B" -+ B", where F(x) = y if and only if

xi+i; i=O,...,n-2
yi =

f(x); i=n-1.

At the beginning of each time interval, determined by an external clock, there is a

transition from one state to the next.

The superposition of all possible state transition graphs for each positive in-

teger n defines the binary Good - de Bruijn digraph of order n, denoted by Bn. See

Figure 7 for some examples of de Bruijn graphs. Thus, the Good - de Bruijn di-

graph B, is a directed graph with 2" vertices, each labeled with a unique binary

vector of length n, and an arc (x,y) from vertex x = (X0,x 1 ,. .. , ,_.1 ) to vertex

y (yo, yi,...,9yn-i) if and only if (zI,x 2,..., zIn-1) = (Yo, Y1,...,yYn-2). We call y a

successor of x and x a predecessor of y. If (x, y) E A, x is adjacent to y in Bn. The

conjugate R of the n-tuple x = (xo, z 1,...,z 9n- 1) is defined as i = (70, X1,..., X.-1),

where 7i = zi E 1 and E denotes addition modulo 2. The companion x' of the n-tuple

x is defined as x' = (zo,x17,...,7-t).

Each arc in Bn can be viewed as an element of the (n + 1)-dimensional binary

vector space BU+l. The arc between the vertex (Xo,. .. , x, 1 ) and vertex (x 1 ,. .. n)
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in B,, can be labeled by the (n + 1)-tuple (zo, x,. . .,z,.-I,z,,). The total number

of arcs in Bn is 2 +I, and each (n + 1)-tuple is assigned to a unique arc. With this

labeling we can inductively construct the digraph B,,+t. We include an arc from

x E Bn+I to y E Bn+l in this new graph B,,+I whenever the terminal vertex of the

arc x E Bn is the same as the initial vertex of the arc y E Bn. We see that a vertex

x is adjacent to a vertex y in the induced digraph when the last n coordinates of

x match the first n coordinates of y in the respective (n + 1)-tuples representing x

and y. This induced digraph is isomorphic to B,,+ by the identity mapping. Thus,

a closed Eulerian trail of length 2"+l visiting every arc in B,, defines a Hamiltonian

cycle visiting every vertex in B,,+,. Since (0, 1) is a Hamiltonian cycle in B1, and

there exists a Eulerian trail in Bn, n > 1, we conclude that a Hamiltonian cycle exists

in B, for n > 1.

Another way to label the arcs in the digraph B,, is to simply label the arc going

from the vertex (Xo,. .. , zX-1) to the vertex (XI, ... , t,,) with the single bit z,,. The

set of labels encountered as we trace the arcs along a Hamiltonian cycle (path) in Bn

generates a binary de Bruijn cycle (sequence). Such a cycle is periodic of period 2n

and contains each of the 2n different binary n-tuples exactly one time in each period

of the sequence. The set of all de Bruijn cycles of length 2n is denoted as Sn.

A subsequence of n consecutive terms (or an n-sequence) from a sequence

S = (3, 82,. .. ,s 2-) is a string of the form (si,$ i+,... ,si+,n_-), where we use the

convention that the subscripts are taken modulo 2n. That is, we allow an n-sequence
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0000
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0010 -- 0100
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S0011 010o- 101 1100

101 .,r0110
1011-1101

0111 ý1110

0 1111

B4

Figure 7. Good - de Bruijn graphi B, 1 < n < 4
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of the form

(S 2 n1-j, S 2-- j+l,... ,S 2 Rss 2 , ... S_ -S2), j = 0,1,... ,n - 2,

which "wraps around" from the end of S to the beginning. Any circular permutation

of S is considered to be the same sequence.

A cycle of period p in B, is an ordered set of distinct vertices (states)

(Vo, V, . . v,..Vp-1), such that vi+1 is the successor of vi, i.e., vi+1  = F(vi),

i = 0, 1,... ,p - 2, and vo = F(vp-.) . Clearly, an edge-factor in B, is isomorphic to

a factor in Bn+i.

In addition to having two successors, each vertex in Bn has exactly two pre-

decessors. Moreover, if vertex x is a predecessor of vertex y, the following is always

true:

1. i is a predecessor of y.

2. x is a predecessor of y'.

3. i is a predecessor of y'.

The four vertices x, R, y, and y' are commonly called an adjacency quadruple. An arc

(x, y) is directed from vertex x to vertex y and called incident with both x and y.

Conversely, x and y are incident to the arc (x,y). A vertex x = (xo, X1 ,.. . ,x-1) in

B,, is incident to the arcs (0, x0, XI),... , Xn-0), (1, X0, X11 •... 1Xn-1), (Xo, X1,...- , Xn-1, 0),

and (Xo, XI,... Ix,-,.1 1) that constitute an adjacency quadruple in B,,+,.

In an edge-factor of B,,, each arc uniquely identifies its cycle. The cycle to

which the arc a belongs is denoted by (a). The set of incident vertices for a given
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cycle (a) is denoted by (a),. Two cycles (a) and (,3) are adjacent if they are arc

disjoint and there exists an arc -f on (a) whose conjugate i is on (13) (i.e., a, 3 are

both incident to same vertex v). It follows that (a) and (13) are adjacent whenever

(a) and (13) are disjoint and (a), nl (3)) # 0. Consequently, each vertex is incident to

2 distinct cycles in an edge-factor consisting of simple cycles.

Furthermore, let y(a) ,, denote the set of vertices vi E (a) ,, for which

d(y, vi) = d(y, (a),, ). From each set y(a) , a specific vertex vi E ,(a) , is designated as

the representative vertex of (a), denoted by vi = y(a)R.

Recall that the distance, d(x, y), between two vertices x and y in a weak

digraph is the minimum length of a walk joining them in the underlying graph. From

Equation II.1 on page 16, the distance, d(y, (a) , ), between a vertex y and the set of

vertices (a) ,, in Bn equals min {d(y, x)}.

One factor occurs so often that it has been given a special name. The Pure

Cycling Register Factor consists of cycles formed by the cyclic rotation of the bits

in the Pure Cycling Register, PCRn. Golomb [Ref. 61 shows that the number of

cycles, Z(n), in the PCRn is given by Z(n) = 1- E (d)2a, where 0 is Euler's
n dIn

totient function and the summation is over the divisors of n. See Table I for values of

0(n) and Z(n). Mykkeltveit [Ref. 20] shows that no shift register (linear or nonlinear)

of length n can generate a factor containing more than Z(n) cycles.
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n O4n) Z(n)
1 1 2
2 1 3
3 2 4
4 2 6
5 4 8
6 2 14
7 6 20
8 4 36
9 6 60
10 4 108
11 10 188
12 4 352

Table I. Values of Euler's function O(n) and of the cycle function Z(n), 1 • n < 12
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III. COMBING SEQUENCES

"I want a clean cup," interrupted the Hatter. "Let's all move one place on."
He moved on as he spoke, and the Dormouse followed him. The March Hare
moved into the Dormouse's place and Alice rather unwillingly took the place
of the March Hare. The Hatter was the only one who got any advantage from
the change.

Alice's Adventures in Wonderland, Chapter 7

A. INTRODUCTION

In Chapter I, Section C, we introduced the functional '(fl, f 2,... , f2.), whose

domain consists of the 2' projections from B1 to Bn defined on a sequence of period

2" by

fi(sls,+1 I,..., s,+,-_) = (s,, s,,..., S41-01

wherei<j, <'< •-2<i+I-1.

The function fi can be viewed as an I-long window containing n viewing sta-

tions or as comb of length I with n surviving teeth, which we call an (l, n)-comb.

Occasionally, we categorize such a comb by its longest string of consecutive teeth.

An m-comb denotes a comb with at most m consecutive teeth. It is also sometimes

convenient to normalize a comb so that a longest string of consecutive teeth always

appears on the left. For example, the (5,3)-comb, L11, defined on a 23-long sequence

by

fi(Si, 64, S42, Si+3, Si+4) -= (Si, Si+31 Si+4)i
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is normalized to the (6,3)-comb, t!!I, specified by

f, (S,, S,+ l, S+2, Si+31 3,+, 3,+5) = (8i, s,+•, 8+5),

i.e., II.611 nof d Il*d_._. (Each are 2-combs). There also may be instances when one

wants to use the version of the comb that has the smallest length 1.

If a sequence, S,,, of length 2" has the property that some (1, n)-comb can

extract every different n-tuple, then S, is called complete or nonclassical de Bruijn.

It follows that the reverse and complement of a complete sequence are also complete.

By definition, every de Bruijn cycle is complete.

B. SEQUENCES AND THEIR EXTRACTED n-TUPLES

To illustrate these concepts, consider the sequence S of length 24 given by

S = 0000111100101101. Using the classical de Bruijn (4,4)-comb denoted by the

symbol, C = , and specified by

f,(S,, 34+, S,+2, S,+3) = (8i, S,+l,8,+2, S,+3),

4-tuples are extracted from S in the following order: fi -+ 0000, f2 -4 0001,

13 "4 0011, fA - 0111, As -+ 1111, fA -+ 1110, f7 -+ 1100, 18 -+ 1001, fA -+ 0010.

fio -+ 0101, fl, -+ 1011, f12 -4 0110, f13 -+ 1101, f14 - 1010, f15 4 0100,

f'5-+ 1000. The (4,4)-comb applied to S generates a sequence T(C, S), of 4-tuples

that specifies a Hamiltonian cycle along the Good - de Bruijn graph B4. Figure 8

represents this cycle. We see that the sequences, S and T(C, S), define the same cycle

around B,.
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0001 1000

0010 0100

0011 0101 1010 1100

Lj v0110..1
1011 1101

0111 1110

1111

Figure 8. A Hamiltonian cycle in the Good - de Bruijn digraph B 4

The (8,4)-comb, C' = !.__, specified by

f,(S, -419 $,+2, Si+31 944, 81+5, i,+9, S,+) = (S S1 8,, 8 ,i+2, S,+7),

generates the following sequence, T(C', S), of distinct 4-tuples from S: (0001, 0000,

0010, 0111, 1110, 1111, 1101, 1000, 0011, 0100, 1010, 0110, 1100, 1011, 0101, 1001).

The sequence T(C', S), however, does not represent a Hamiltonian cycle along the

de Bruijn digraph B4 since there are consecutive 4-tuples in T(C', S) that are not

adjacent in B4 . Since this (8,4)-comb has 3 consecutive teeth (i.e., it is a 3-comb),

the sequence S must specify a walk along the graph B3 (Figure 9A) that visits every

29



C.:)
000 (0,1)

001 000 (2,8).- 7,15)

010 (9,14)

101 (10,13)

011 110 3,11

Figure 9. Good - de Bruijn digraph B 3

vertex exactly twice. The visitation times for each vertex in this walk are shown in

the parentheses in Figure 9B.

Let C be an 3-comb for the sequence S. It follows immediately from de Bruijn's

doubling theorem [Ref. 13] that the sequence S, since it visits every vertex of B3 twice,

also induces a double Eulerian cycle along the digraph B2. Furthermore, the sequence

T(C, S), of 4-tuples specifies a double Eulerian cycle along B4-(,+,), a digraph iso-

morphic to B2 [See Appendix B]. These two respective cycles, with visitation times

in parentheses, are shown in Figure 10. The sequences T(C, S) and S define identical

walks along the isomorphic graphs B4-.(+,) and B2 , respectively.
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12)(2)

f0,1,2,3} 00
(3.9)(51) (3.9) (.6• (1o 1s) - (Io, 15 Z

{4,5,6,7} ( -"8,9, 10 ,1 1} 01 ___________ 10

(4.12\) (7,13) (4.12\) (7,13)

112,13,14,151 1

(5,6) (5,6)

R 2  B2

Figure 10. B 4-(,+I) and the Good - de Bruijn digraph B 2

Lemma III.1 Let S,, be a complete binary sequence of length 2" with an

associated (n-k)-comb. Then S,, specifies a walk that traverses each arc along

the digraph B,.-(k+l) exactly 2 k times where (k + 1) < n.

Proof: Since S, is complete, each (n - k)-tuple occurs exactly 2k times. The

arcs in the Good - de Bruijn digraph, B,,-(k+), are uniquely represented by

(n - k)-tuples. Therefore, S, specifies a walk that traverses each arc exactly

2k times along the digraph B.-(&+l). 0

Corollary 111.2 Let S, be a complete binary sequence of length 2n with an

associated (n-k)-comb, C. Then the sequence, T(C, S,), of n-tuples extracted

by the comb specifies a walk that traverses each arc exactly 2k times along the

digraph n.'-(k+1) where (k + 1) < n.
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Proof: Follows immediately from Lemma 111.1 and the definition of the iso-

morphic digraph 9-(k+l). •

The elements of the set W2 k for B.-(k+l) define 2"-long walks along the arcs of

the graph BR-(k+I) where each arc is visited exactly 2 k times. The set W 2 k includes

all the sequences having an (n - k)-comb. The following theorem of van Aardenne-

Ehrenfest and de Bruijn [Ref. 12] allows us to count, in any Eulerian regular directed

graph D, the number of sequences that define a walk along D where each arc is

traversed exactly p times. Table II provides the number of sequences defining an

Eulerian or double Eulerian cycle along Bn, for 1 < n < 4.

Theorem 111.3 (van Aardenne-Ehrenfest and de Bruijn ) Let D = (V, A)

be an Eulerian regular directed graph where in(v) = a. Then the number of

ways, IIDII,, to traverse each arc in D exactly p times is

1 p\I(o(d)! ,WIv
{{D{{=• •',, , = ,()( ')d!l {{ JD{I (III.1)

ap

where 0 is the Euler's totient function, IIDIII is the number of Eulerian cycles

in D, and the summation is extended over all divisors of p.

Theorem 111.3 was proved using an interesting but considerably complicated

argument. The development and proof of the theorem is summarized in Appendix A.

Let S be a binary sequence of length 2" with an (n-1)-comb. By Lemma 11.1,

S is an element in the set of sequences, W2, that specify a double Eulerian cycle along
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n Eulerian Double Eulerian
1 1 5
2 2 82

3 16 52,496
4 2048 44,079,843,328

Table II. The number of Eulerian and double Eulerian cycles along B., 1 < n < 4

B,,- 2 . From Theorem 111.3, the number of distinct double Eulerian cycles along B,,-2

is given by

11B.-2112 = (1 + 32n-)22I-3-l+1 (111.2)

Not every sequence, however, in W 2 has an (n - 1)-comb. Finding the general formula

for the number of sequences with an (n - 1)-comb has been elusive. In the follow-

ing two sections we show that the number of sequences of length 2" possessing an

(n - 1)-comb is much smaller than the number of sequences with an n-comb.

C. THE RUN STRUCTURE OF SEQUENCES POS-

SESSING (n-1)-COMBS

It is well-known that the number of de Bruijn cycles of length 2" is 22--

Therefore, of all of the double Eulerian cycles along Bn- 2 , there are 22 n--n that are

defined by de Bruijn cycles. In this section we show that, statistically, we should

expect the number of 2"-long sequences with an (n - 1)-comb to be only 22u-2-n+2.

A run of ZEROs in a binary sequence is defined to be a subsequence of con-

secutive O's that is preceeded and followed by a 1. The length of a run of ZEROs

is the number of consecutive O's in the subsequence. A run of ONEs is similary de-
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fined. A binary sequence can be interpreted as a sequence of integers representing the

lengths of the alternating runs of ZEROs and ONEs in the sequence. For example,

the sequence:

S = 00001010110111010011001000011111

corresponds to the run sequence R = (4111121311222145). The sequence, R, consists

of a subsequence Z5 = (41111224) of the run lengths of runs of ZEROs interleaved (or

perfectly shuffled [Ref. 21]) with a subsequence 05 = (11231215) of the run lengths

of runs of ONEs.

The multiset consisting of the lengths of the runs of ZEROs and ONEs in a

de Bruijn cycle is completely determined, (See Chapter V or [Ref. 6]). In fact, a

run sequence that defines a cycle in W., in B,, can also be determined. For example,

when S is a sequence that defines a double Eulerian cycle along B", the multiset of

the lengths of the runs of ZEROs or ONEs in S consists of one of only two possible

multisets, respectively.

Theorem III.4 Let S be a sequence defining a double Eulerian cycle along

B,. Then S satisfies one of the following 2 criteria:

1. S has 2 n-k runs of ZEROs of length k for 1 < k < n and a single run of
ZEROs of length n + 2, or

2. S has 2 n-k runs of ZEROs of length k for 1 < k < n - I and two runs of
ZEROs of length n + 1.

The same distribution holds for the runs of ONEs.
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Proof: Since each (n + 1)-tuple occurs exactly twice in S, the longest runs of

ZEROs must consist of either:

1. Exactly 1 run of ZEROs of length n + 2, or

2. Exactly 2 runs of ZEROs of length n + 1.

Case 1: The run of ZEROs of length n + 2 must be preceded and followed by

a 1, or the (n + 1)-tuple (00... 00) would appear at least three times in S. The

(n + 1)-tuple consisting of a 1 followed by the n-tuple (00 ... 0) also occurs

exactly twice in the sequence. One occurrence, however, is already accounted

for by the run of ZEROs of length n + 2. Thus, there is an additional run

of ZEROs of length n that provides the second (n + 1)-tuple consisting of a

1 followed by the n-tuple 00 ... 0. Thus, there is no run of ZEROs of length

n + 1. To find the number of runs of ZEROs of length k, for 1 < k < n - 1, we

consider all n + 1 consecutive bits of the sequence that begin with a 1 followed

by the k-tuple 00 ... 0 and then a 1. Each such run can be made to correspond

to an arbitrary (n + 1)-tuple of the form

100...01xx...x,
k n-k-i

where the x's are chosen as arbitrary bits. Since we are free to choose each of

the remaining n - k - 1 bits, there are 2n-k-1 x 2 runs of ZEROs of length k

for 1 < k < n - 1. With the single run of ZEROs of length n and the single
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n Eligible Run Distributions for B,,
1 {3,1}

{2,2}
2 {4,2, 1, 1}

{3,3, 1, 1}
3 {5,3,2,2, 1, 1, 1, 1}

{4,4,2,2, 1,1,1,11
4 {6,4,3,3,2,2,2,2, 1, 1, 1, 1,,1, 1, 1}

{5,5,3,3,2,2,2,2, 1, 1, 1, 1, 1, 1, 1, 1}

Table III. Distribution of runs for double Eulerian cycles along Bn

run of ZEROs of length n + 2 the result follows. The same argument holds for

runs of ONEs.

Case 2: The two runs of ZEROs of length n + 1 must each be preceded and

followed by a 1, or the (n + 1)-tuple, 00... 00, would appear at least three

times in S. The (n + 1)-tuple consisting of a 1 followed by the n-tuple 00 ... 0

occurs exactly twice in the sequence. These, however, are already accounted

for by the two runs of ZEROs of length n + 1. Thus, there is no run of ZEROs

of length n. In a like manner as above, there are 2n-k-1 x 2 runs of ZEROs of

length k, for 1 < k < n - 1. With the two runs of ZEROs of length n + 1 the

result follows. The same argument holds for the run distribution of ONEs. a

Every double Eulerian cycle around B,, can be described by a binary sequence

whose run sequence, R, consists of a subsequence Z,, interleaved with a subsequence

O,,. The subsequences Zn and 0,, are respectively a permutation of one of the two

multisets in Theorem III.4. To determine how many sequences have (n - 1)-combs,
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it is useful to partition all of the double Eulerian cycles into one of the following 3

sets: P(,), 2 (n,l), and P(n) defined as:

1. The set, P(n,2), consists of sequences where both the ZERO and ONE run
sequences are permutations of the multiset that includes the element n + 2.

2. The set, •P(n,I), consists of sequences where both the ZERO and ONE run
sequences are permutations of the multiset that includes the element n + 1.

3. The set, P(,), consists of sequences where the ZERO and ONE run sequences
are permutations of different rnultisets.

The sizes of each of the 3 sets, P(n,), 2P(,,1), and "P(), are determined in a

straightforward manner. Equation 111.2 provides the total number of double Eulerian

cycles, IIB II2, where IIBnII 2 = I-n, 2)I + IP(nl)I + IP(.)I. Let &, denote the Eulerian

digraph constructed from the Good - de Bruijn digraph by removing the two arcs

(loops), (0) and (1). One can see that JP(n,I)I is equivalent to the number of sequences

representing double Eulerian cycles along B,, i.e., I'P(n,II = lIBIII2. From Equation

A.5 in Appendix A we find

IK•(-,)l -= (2(2-n--) +2-(2n+1-2)2(2n-n-1)12(2"-2)22)

= 2(2"-n-2) + 2(2n---2)3(2n-2) (111.3)

= 2(2"---2)(1 + 3(2n-2)).

Now let 3,,, and Bn denote Eulerian digraph- constructed from the

Good - de Bruijn digraph by removing just the loop, (0) and (1), respectively. We

define Q to be the set of sequences representing double Eulerian cycles along &n. By

inserting a 0 into the longest run of ZEROs of a sequence Q E Q, a sequence is created

that contains a run distribution of ZEROs that includes the element (n + 1) tw'ce
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and a run distribution of ONEs from either of the two eligible multisets. In a similar

manner, each sequence representing double Eulerian cycles along B,, is equivalent to a

sequence with a run distribution of ONEs that includes the element (n + 2) and a run

distribution of ZEROs from either of the two eligible multisets. We define 1z to be set

of sequences representing the double Eulerian cycles along B,,. The set Q U 1R = U

is equivalent to the set of double Eulerian cycles that includes all the elements of

"P(.). In addition to the elements of P(n), the set U also includes the sequences that

have ZERO and ONE run sequences appearing as permutations of the multiset that

includes the element n + 1, i.e., '(, 1) U P(,,) = U. It follows immediately that

I•1 = (11b.112 - IP(.,I)1) x 2,

since IlB,,1 2 = iIB,,1 2. By again applying Equation A.5 in Appendix A, we find that

IP(.)I = (1(2(2n-n-1) + 2-(2n+1-1)2(2"-n-1)12(2n-1)21) - 2(2-n-2)(I + 3(2n-2))) 2

( (2-n-n-2 + (2n2)3(2n1) - (2n-n2)(1 + (2n2))) x 2

= 2(2"-)3(2"-2).

(III.4)

Consequently, it follows that

I(n,2)1 = IIB,,I2 - IP(n,)1 - IP(n)j (111.5)

= 2(2n-n)3(2n-2).

Table IV provides the values for IIBII2, IP(n, 2)I' IP(n,1)1, and IP(n)I, for 1 < n < 4.
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n I B.-~112 JP(n,2) I jPf,,,1) I IP(n) I
1 5 2 1 2
2 82 36 10 36
3 52,496 23,328 5,840 23,328
4 44,079,843,328 19,591,041,024 4,897,761,280 19,591,041,024

Table IV. Double Eulerian cycles along B,,, by category

D. RANDOMNESS OF THE DOUBLE EULERIAN WALKS

In this section we show that the number of classical de Bruijn cycles in the

set P(,,,2) coincides with the expected number of de Bruijn cycles that would exist

if the sequences in P(n,2) had a particular randomness property. (Recall that of the

2(2'"-)3(2"-2) sequences in P(n,2), exactly 22n+,-1-2 are de Bruijn, since the sequence

length corresponds to a Hamiltonian path through Bn+2 .)

A Randomness Property: From any vertex, each departing arc is equally likely

to be traversed next in a walk along B,, defined by the 2n+ 2-long sequence, Sn+2 ,

where Sn,+2 E P(n,2).

Each vertex in Bn is entered 4 times along the walk defined by the sequence

S,,• 2 . Let the arcs in B,, be labeled with O's and l's as described in Chapter II.

Suppose vertex v is entered from the arc labeled a, for the first time. Let X, be a

binary indicator variable where X1 = 1 if and only if the next arc traversed from v

is labeled 1. The indicator variable X1 = 0 if and only if the next arc traversed from

v is labeled 0. Similarly, when a vertex v is entered from the arc labeled a1 for the

second time, let X 2 be a binary indicator variable where X 2 = 1 if and only if the
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next arc traversed from v is labeled 1. The indicator variable X 2 = 0 if and only if

the next arc traversed from v is labeled 0.

The joint probability function for the two discrete random variables X, and

X 2 is given by

px1,x2(xI,x2) = P(X 1 = X1 ,X 2 = x2 ), for x 1 , 2 E {0, I}.

If X, 0 X 2 for each vertex in B,,, the sequence Sn+2 is de Bruijn of length 2"+2, since

each (n + 2)-tuple is distinct. The probability that X, - X 2 for each vertex in B,, for

the walk S.+2 can be computed quite easily.

Let v be a vertex that is not incident with a loop in B,,. Since S.+2 defines a

walk where each outgoing arc from v is equally likely to be visited next and each arc

in B,, is visited exactly two times, it follows that

2
P(X2 =1IXI =-o)-=

where the bar within the parentheses indicates conditional probability. Furthermore,

if v is a vertex incident with a loop then,

P(X 2 = 1X 1 =-0) =1,

since each arc in B,, must be visited twice and we must visit the loop at this time or

miss it entirely. Therefore, the probability that S.+2 is de Bruijn is p = (2) 2"-2

If the sequences in P(,,,2) have the property that they each define a walk by

which subsequent arcs from each vertex are equally likely to be traversed, we would
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expect
(2( . ) x 2"-2 _2="-n32-2 x 2 =' 2 2n+'-n-2

I P(n,2)I X (i2u = 2x (j) =2

sequences in P(n, 2) to possess the de Bruijn property. Since there are exactly 22n+' -n-2

de Bruijn cycles in P(n,2), this expectation is realized. In the next section, we discuss

the implication of this randomness property with respect to the expected number of

complete cycles associated with an (n - 1)-comb.

E. THE NUMBER OF COMPLETE CYCLES

Counting the exact number of sequences associated with an (n - k)-comb,

1 < k < 2 n-1 - 1, remains a difficult problem. We can, however, estimate the size

of the set of complete cycles associated with a particular comb. One could postulate

that there are equal numbers of sequences for each possible comb, especially since the

previous section suggests that the successive bits (0 and 1) are equally likely among

the set of eligible sequences. It has been found by a computer search that sequences

with n-combs tend to be much more common than sequences with (n - k)-combs, for

k > 1. This result is supported by the same probabilistic argument developed in the

previous section.

For simplicity, we again utilize the sequence Sn+2 defined in Section D. Here we

find the probability that Sn+ 2 supports an (n - 1)-comb of the type " .. . Suppose

that vertex v is entered from the arc labeled a, for the first time. Then, the indicator

variables X, and X 2 are defined as before, except that now we are concerned with the

second arc traversed from v. Therefore, we again let X1 be a binary indicator variable
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where X, = 1 if and only if the second arc traversed from v is labeled 1. The indicator

variable X, = 0 if and only if the second arc t.aversed from v is labeled 0. Similarly,

when vertex v is entered from the arc labeled a, for the second time, let X 2 be a

binary indicator variable where X 2 = 1 if and only if the second arc traversed from

v is labeled 1. The indicator variable X 2 = 0 if and only if the second arc traversed

from v is labeled 0.

In contrast to the situation described in Section D, the inequality of X, and X2

for all vertices in B,, is not a sufficient condition for S,+ 2 to support an (n - 1)-comb.

It must also be the case that Y1 0 Y2, where Y, and Y2 are similarly defined on the

other arc, a2 , entering the vertex v. Therefore, when vertex v is entered from the arc

labeled a 2 for the first time, let Y1 be a binary indicator variable where Y, = 1 if and

only if the second arc traversed from v is labeled 1. The indicator variable Y1 = 0

if and only if the second arc traversed from v is labeled 0. Similarly, when vertex v

is entered from the arc labeled a2 for the second time, let Y2 be a binary indicator

variable where Y2 = 1 if and only if the second arc traversed from v is labeled 1. The

indicator variable Y2 = 0 if and only if the second arc traversed from v is labeled 0.

The joint probability function for the 4 discrete random variables X 1 , X 2 , Y1,

and Y2 is given by

PX,.X2 ,y,.Y2 (XI, z2, y1,y 2 ) = P(XI = X1 ,X 2 = X 2 , Y1 = y 1 , Y2 = Y2),

for Xl,z 2 ,y 1 ,y2 E {0,1}. If X1  6 X 2 and YI/ # Y2 for all the vertices in B,, the
ni--

sequence has a comb specified by I" [ 11.. The probability that X, # X2 for each

42



vertex in B. not incident with a loop is 1. Given that X, 0 X 2, the probability that

Yi # Y2 is 1. Therefore the probability of X, 6 X2 and Yj 6 Y2 is 1 2Z

Furthermore, if v is a vertex incident with a loop then,

P(X 2 = liXI = 0) = 1,

since each arc must be visited twice. Therefore, the probability that S,,+ 2 has a
n-1I

1"" ]1.1 comb is approximately (1) -. We would expect to find that

IP?(,2)I x = 22n-n32"-2 x =

of the sequences in P(n,2) have these combs. For n = 3, of the 23,328 sequences in the

set "P, there are exactly 2' combs of the type !!!!t.., supporting our claim. In general, the

experimental results support the probabilistic predictions. We have found that the

sizes of the set of 2"-long sequences with (n - 1)-combs, of all types, is substantially

smaller than 22u- -, the number of de Bruijn sequences of length 2".

In the following chapters we develop the necessary theoretical concepts on

double Eulerian cycles to analyze the Good - de Bruijn digraphs and to gain a better

understanding of complete cycles. A complete combinatorial explanation for the

number of sequences satisfying a particular comb is an intriguing goal that seems

very hard to achieve at present.
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IV. A MEASURE ON A GRAPH

"Would you tell me, please, which way I ought to go from here."
"That depends a good deal on where you want to get to," said the cat.
"I don't much care where ... " said Alice
"Then it doesn't matter which way you go," said the cat.

Alice's adventures in Wonderland, Chapter 7

A. INTRODUCTION

In this chapter we develop the theoretical concepts regarding double Eulerian

cycles, i.e., walks on a connected graph or weak digraph that visit every edge exactly

twice. A measure can be given to the visitation pattern of a double Eulerian cycle.

Every de Bruijn cycle (and some nonclassical de Bruijn cycles) of length 2"

defines a walk that visits every vertex on B•, traverses each arc of B._I, and passes

through each arc on B,,- 2 exactly twice. From these latter walks emerges a measure

of complexity of the sequence in question and a notion of the value for the underlying

graph.

B. THE VALUE OF A GRAPH

We define W2 to be the set of walks that traverses each edge (arc) in the graph

(digraph) exactly twice. The set W2 is called the set of double Eulerian cycles. We

define a measure on a walk in W 2 as the sum, over all edges of the graph, of the

positive difference of the visitation times on each edge. The value of a graph G is
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WA Walk B

"V3 (2,6) I2 (1,10) Vi v3  (7,10) (2 (1,2) vi

(3M7 (5,9) (8,9 (3,6)

V)4 (4,8) tis V4  (4,5) V5

Figure 11. Double Eulerian cycles with visitation times

then defined to be the minimum measure over all double Eulerian walks on G. In

addition, every connected graph always has a value.

In Figure 11, two different double Eulerian walks are presented. The numbers

in parentheses are the visitation times. Walk A =(VI, V2, v Ni V5, V2, V3, v4 V5, V21 VI)

has a measure of 25. Walk B = (V 2 , v, v 2,v, v4, Vs, v 2 , v3 , vv, V 2 ) has a measure of

9, which can be shown to be the value of the graph.

Theorem IV.1 Let G be a connected graph. Then G has at least one double

Eulerian walk.

Proof: Let H be the graph generated by duplicating each edge in G. The

degree of each vertex in H is then even. Therefore, Theorem 11.1 implies that

H has a closed Eulerian trail and G must have a double Eulerian cycle. As an

immediate corollary, a double Eulerian cycle in G yields an Eulerian walk in

H. U
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Corollary IV.2 Every double Eulerian cycle in a grapa. G is a closed walk.

Proof: Let H be the graph determined by duplicating each edge in G. From

Theorem IV.A, a walk in H is Eulerian if and only if the walk is double

Eulerian in G. The degree of each vertex in H can be counted by following

an Eulerian walk W, in H. Each occurrence of a vertex along W, adds 2 to

the degree of an interior vertex in Wi and 1 to the degree of the initial and

terminal vertices (recall that a walk is a sequence of vertices and edges). Since

the degree of each vertex in H is even, the initial and terminal vertices of the

walk must be the same vertex. Therefore, every double Eulerian cycle in G is

closed. N

Since a double Eulerian cycle is closed, the edge sequence representing a double

Eulerian cycle can be viewed as a cycle. Alternatively, we can also define a measure on

a walk in W2 as the sum over all edges of the distance along the cycle between the two

occurrences of each edge. From this perspective, the cycle distance between identical

edges in W2 remains constant for each cyclic shift of the edge sequence representing

the double Eulerian cycle. In Figure 12, A = (e5,el, e2 ,e 2,e 3,e3 , el,e 5 , e4,e 4) is a

double Eulerian walk. As before, visitation times are in parentheses. The distance

between the first appearance at each edge el, e2, e3, e4 , e5 and the second appearance

in walk A are 5,1,1,1,3, respectively. Walk B = (el, e2, e2, e3, e3, el, e5 , e4 , e4, es) is the

sequence generated by cyclically shifting walk A by one. The distances between the

two occurrences of each edge in walk B are unchanged.
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V3 (2,7) 12 (3,4) li v3  (1,6) V2  (2,3) v1
eI e2 el e2

(1,8) e5 e3 (5,6) (7,10) e5  e3 (4,5)

e4  e4

v4  (9,10) V5  IT4 (8,9) V5

Figure 12. Double Eulerian cycles with visitation times (cycled)

In a graph G with size q, the sequence of edges fl, f2,..., f29 in a double Eule-

rian cycle completely determines the measure of the walk. More precisely, the measure

of a walk is ultimately determined by the number of edges previously traversed ex-

actly once (called single-edges or a-edges) along the double Eulerian cycle. When

an edge e has been traversed twice (or not at all) during the walk, subsequent edges

along the walk can neither increase nor decrease the difference of the two visitation

times for that edge. When an edge e', however, has been traversed exactly once during

the walk, each subsequent edge traversed along the walk increases the difference of the

visitation time for e' by one. Thus, it is the number of current u-edges at each step

along the walk that determines the measure of the double Eulerian cycle. Finally,

as stated before, the aggregate sum of the a-edges at each vertex along the double

Eulerian cycle, is the measure of the walk. From this perspective, the measure of a

double Eulerian cycle can be calculated as follows:

1. Transform the sequence of edges fen n= in a double Eulerian cycle into a
sequence, {an}", of l's and -l's as follows:
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f 1 if this is the first occurrence of the edge {x, y}
Edge {z, y} = on the double Eulerian cycle

-1 otherwise.

2q

2. Let {tn}2t 1 be the sequence of partial sums of the series j an.

2q

3. The measure of the walk is • tj.
k--I

For example, consider walk A in Figure 11. We find the following:

1. a,,},__j = {1, 1, 1, 1, 1, -1,-1, -1, -1, -1}.

2. ft,n}n = f1, 2, 3, 4, 5, 4, 3, 2, 1,0}.

2q

3. The measure of walk A is E tj = 25.
kc=1

It is interesting to note that set of possible sequences {an n 1 of I's and -I's

for a graph G defined in this way is a subset of all of the (north/east) routes between

opposite comers on a q x q lattice that are on or below the diagonal, where q is the

size of G. It is well-known [Ref. 22] that the total number of subdiagonal routes is

2Cn = 2(n)

where C, is the nth Catalan number.

In the remainder of this section we show that the value of a graph G can be

determined as a function of the edge-status, es,,, of a vertex v where v E EM(G) and

q, the size of G. First we develop some results relating the concepts of status and

edge-status.
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Theorem IV.3 Let T = (V, E) be a tree. Then es,, = s,, - q where es, is the

edge-status of v, s,, is the status of v, and q is the size of T.

Proof: If a tree T has one edge, it follows immediately that es,, = s" - q.

Assume T has more than one edge. Let v be a root of T that gives T a height

of h. Assume el and e2 are two edges such that de(v, el) = de(v, e2) = k and

where el and e2 are incident with the same vertex v3 with d(v, v3) = k+1. Then

(v,. .. ,el,v 3) and (v,. .. ,e 2,v3) are two different walks from v to the vertex

v3. This infers a cycle in T. Therefore, each edge e E E, where de(v, e) = i,

0 <_ i < h - 1 is incident with a unique vertex n E V - v where d(v, n) = i + 1.

Since IEI = IVI - 1, it follows that

es,,=Zde(v,e)- Y d(v,e)- -=-s,,-q.
CEE nEV-v

The following corollary follows immediately from Theorem IV.3.

Corollary IV.4 Let T be a tree, with edge-median EM(T) and median M(T).

Then EM(T) = M(T).

Unfortunately, if a graph G is not a tree, it is not necessarily true that

EM(G) = M(G). Graph G in Figure 13 has EM(G) = {v6 } and M(G) = vs}
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Figure 13. Example for which EM(G) 9 M(G)

The next result provides a lower bound for the measure of a walk in W2, where

v E V on a connected graph G = (V, E).

Lemma IV.5 Let G = (V, E) be a connected graph of size q. Let v E V, with

edge-status es,,. If m is the minimum measure of a double Eulerian cycle W2.

beginning at v, then m > 2(es1,) + q.

Proof: Let v be the initial vertex of a double Eulerian cycle in G. Let

max de(V,e) = n. Since a double Eulerian cycle is closed, all of the mem-
ceEE

bers of the set of edges of edge-distance j,, " j <_ n, from v mist be visited

twice before all edges of edge-distance j - 1 are visited twice. It follows that

there are at least j a-edges when any edge ej in the set of edges of distance

j from v is visited for the first time in a double Eulerian walk. Furthermore,

there are at least j + 1 a-edges when ej is traversed the second time in the
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walk (since ej is now included in the set of o-edges). Therefore, each edge e3

at edge-distance j from v increases the measure of a walk by at least 2j + 1. It

follows that if m is the minimum measure of a double Eulerian walk beginning

at v, then

M > 1: (2(d,(v,e)) + 1) = 2(es) + q.
eEE

We now describe an algorithm (Algorithm A) to construct a double Eulerian

cycle of minimum measure on a connected graph. The algorithm includes a subroutine

Cyclel that is recursively called throughout the algorithm. Informally, Algorithm A

is very similar to the depth-first search algorithm [Ref. 231. The algorithm proceeds

from the initial vertex v in a forward direction (adding new edges) for as long as this

is possible. When it is no longer possible to advance (add a new edge), the algorithm

backtracks to the first vertex from which it is then possible to go forward revisiting

edges as it goes. The algorithm proceeds until each edge is visited exactly two times.

Each new edge added by the algorithm has the following properties:

1. The new edge is not in the current walk,

2. The new edge is incident with the last visited vertex in the walk, and

3. The edge-distance from v to the new edge is exactly one greater than the
edge-distance from v to the last visited o-edge in the walk.
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It follows from the above that when no new edge can be added to the walk, the next

edge traversed is the last visited a-edge in the walk (i.e., the a-edge of greatest edge-

distance from the initial vertex v). This is in essence tne backtracking aspect of the

algorithm.

ALGORITHM A [Constructs a double Eulerian cycle on a connected graph

G = (V, E) beginning at vertex v E V]

Input: A graph G = (V, E) of size q and a vertex v as global parameters.

Output: Array P, an ordered list of edges constituting a double Eulerian cycle

through G beginning at the given vertex v.

Parameters N = [n1,.... n2q+1], P = [pj,...,P2q], and H = [h1,...,hq1, are global

arrays of vertices, edges, and edges of size 2q + 1, 2q, and q, respectively.

(Note: The parameter d is an integer that denotes the edge-distance of the last visited

or-edge from vertex v in an ongoing walk. When there are no o-edges in the walk, d is

set to -1. The parameter ni indicates the current vertex in the walk. The parameters

i and j are integer counters indicating the number of edges currently traversed and

the number of current o-edges along the walk, respectively.)
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Figure 14. A graph to illustrate Algorithm A

Algorithm A

Initially set j := 1; i:= 1; d:= -1; n, := v; nk := empty; 2 < k < 2q + 1;
pt := empty. 1 < 1 < 2q; and h.. := empty; I < m < q.

Cyclel(N, P, H,j, i, d); end.

Subroutine Cyclel (N, P, H, j, i, d)

if de(ni, e) = 0 and de(ni, e) = d + 1 and de(v, e) =d(v, ni) and e 'P, for e E E
then nj+. =x where e = (ni, x)

pi :=e

d :=d+1
i =i +1

j :=j+l
Cyclel(N, P, H, j, i, d)

else pi :=hi

d :=d-1
i :i+1I
j :j- 1

if i = 2q
then end.
else Cyclel(N, P, H,j, i, d)

To illustrate Algorithm A, consider the graph G in Figure 14. Let v 4 be the

initial vertex v. Both el and e6 satisfy the criteria for being a new edge to add
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to the walk. Without loss of generality select el. Subsequently, both e2 and e4

satisfy the criteria for a new edge to enter the walk. Let e4 be selected. Continu-

ing, the double Eulerian cycle constructed by Algorithm A is the sequence of edges

P = [el,e 4 ,e 4,e 2,e 3,e 3 ,e 2,ei,e 6 ,e5 ,es,ee]. Alternatively, if e2 had been selected

rather than e4, the sequence of edges P' = [e1,e 2,e 3,e 3,e 2,e 4,e 4,ei,e 6 ,es,e 5 ,er] is

generated. Both F and F' have the same measure.

The algorithm adds a new edge to the walk when the three conditions stated

above are satisfied. Each new edge has an edge-distance from V of exactly one greater

than the last a-edge visited. During the walk if a new edge cannot be traw ?d, the

algorithm backtracks through the last visited a-edge until the criteria for adding a

new edge is met. When a a-edge is added through backtracking, the a-edge to be

traversed is the one that has the greatest edge-distance from v of all a-edges currently

in the walk. This is clearly the last visited a-edge. The following lemma shows that

ultimately each edge in the graph is traversed exactly twice.

Lemma IV.6 Let G = (V, E) be a connected graph. Algorithm A constructs

a double Eulerian cycle on G beginning at v E V.

Proof: We prove, by induction on the edge-distance from the initial vertex v,

that each edge is traversed exactly twice.

Basis Step: The edge-distance between the first edge e on the walk generated

by Algorithm A and the initial vertex v is 0. Since there are only a finite
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number of edges, the edge-distance from v to each edge is finite. Therefore,

the walk must eventually backtrack through each of the a-edges of the ongoing

walk generated by the algorithm. When there is no edge of distance 1 to be

added after edge e, tuen edge e will be revisited by backtracking. Hence e is

traversed exactly 2 times. In a similar fashion when the walk continues along

another edge e' of edge-distance 0 from v, finiteness and backtracking insure

that e' is traversed exactly twice.

Inductive Step: Assume that the algorithm traverses each edge e where

de(v,e) = k. Let ek+l be an edge of edge-distance k + 1 from v. There

exists an edge ek of edge-distance k incident with edge ek+l, else ek+i is not

of distance k + 1 from v. Let vertex Vk be incident to both ek and ek+i. The

distance from v to vk is k, else either the edge-distance to ek is not k or the

edge-distance to ek+l is not k + 1. When ek is traversed for the first time, the

edge ek+1 satisfies the criteria to enter the walk. Either ek+i or another edge

e°kl of edge distance k + 1 will be the nex t edge added to the walk. If el,+

is not the next edge in the walk, then because there are only a finite number

of edges and by backtracking, the walk will eventually return to vk. The edge

ek+i still satisfies the criteria to enter the walk. Since there are only a finite

number of edges incident to vk, ek+1 must ultimately enter the walk and be

traversed exactly twice through backtracking. U
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We made the point that when an edge of distance k from v is added to a walk

in Algorithm A, it is added when an edge of distance k - 1 is the last a-edge in the

walk. Now we make a further statement about the set of a-edges when an edge of

distance k is added to a walk.

Lemma IV.7 When an edge ek of edge-distance k from the initial vertex of

the walk is traversed for the first time using Algorithm A, there are exactly k

edges that have been previously traversed exactly once.

Proof: We prove, by induction on the edge-distance, that when an edge ek of

edge-distance k from the initial vertex v of the walk is traversed for the first

time using Algorithm A, there are exactly k a-edges on the walk.

Basis Step: When an edge e of edge-distance 0 is traversed for the first time,

we are at the vertex v and there are no a-edges remaining in the walk.

Inductive Step: Assume that when any edge of edge-distance k is traversed

using Algorithm A for the first time there are exactly k a-edges in the ongoing

walk. Let de(v, ek+1) = k+l. The edge ek+1 is initially traversed only when the

last visited a-edge e in the walk has an edge-distance of k from v. Therefore,

by the inductive hypothesis, there are then exactly k + 1 a-edges after ek+l

initially enters the walk. U
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Now we can relate the measure of double Eulerian cycles in a graph G to the

edge-status of G.

Theorem IV.8 Let G = (V, E) be a connected graph of size q. Let v E V,

with edge-status es,. If m is the minimum measure of a double Eulerian cycle

W,, beginning at v, then m = 2(es•) + q.

Proof: Algorithm A constructs a double Eulerian cycle through a graph.

When an edge e3. of edge-distance j from the initial vertex in the walk is

traversed for the first time using Algorithm A, Lemma IV.7 states there are

exactly j a-edges. This then adds j to the measure of the walk (1 for each of

the j a-edges). When an edge ei of edge-distance j is traversed by Algorithm

A for the second time, there are exactly j + 1 a-edges (the edge ej now belongs

to the set of a-edges). This adds j + 1 to the measure. Therefore, the measure

of a double Eulerian cycle constructed by Algorithm A is

E (de(v,e) + de(v,e) + 1) = E (2d.(v,e) + 1) = 2(es) + q.
eEE eEE

It follows immediately from Lemma IV.5 that the minimum measure of a

double Eulerian cycle W21, beginning at vertex v is 2(es•) + q. U

Corollary IV.9 Let G be a connected graph. Let W4'2. be a double Eulerian

cycle on G that produces the value of G. Then v E EM(G).
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Figure 15. To illustrate the value of a graph

Proof: Follows directly from The -rem IV.8 and the definition of EM(G). E

Corollary IV.1O Let G = (V, E) be a connected graph of size q with a value

of m. Let v E EM(G), with edge-status es . . Then m = 2(es,,) + q.

Proof: Follows immediately from Theorem IV.8. U

Corollary IV.11 Let T = (V, E) be a tree of size q. Let v E V, with edge-

status es.. The measure m of a double Eulerian cycle W, in T is m = 2(s,)-q.

Proof: Follows directly from Theorem i and Theorem IV.8. U

We have shown that the value of a connected graph G is determined by the

edge-status, es, of a vertex v E EM(G) and by q the number of edges in G. Algo-

rithms to find the median of a graph can be fouad in [Ref. 24J and [Ref. 25]. These

algorithms can be modified in a straightforward manner to determine the distances

from vertices to edges and the edge-median of a graph.
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We discussed earlier that the measure of a walk W E W 2 can be defined using

the distance between the two occurrences of each edge on the cycle W. If each cyclic

shift of a cycle is considered equivalent, this definition assigns the same measure to

equivalent cycles. In Figure 15, the double Eulerian cycle,

W = (el, e5 , e4, e3, e3 , e2, e2 , e4, e6, e6, e5, el),

and each cyclic shift of W has the measure 12 when using the distance between

identical edges to calculate the measure.

C. THE VALUE OF A DIRECTED GRAPH

The following well-known theorem is stated without proof. See, e.g., [Ref. 191.

Theorem IV.12 A weak digraph is Eulerian if and only if for every vertex

its in-degree and out-degree are equal.

From this theorem, the next result follows readily.

Lemma IV.13 Every double Eulerian walk in a digraph D is closed.

Proof: Let P = (u = Uo, U1,. .. ,u2k = v) be a double Eulerian cycle in the

digraph D = (V, A) where IAI = k. If u 9 v, then v appears an even number

of times on P, since each incoming arc on v is used exactly twice. Since v is

the terminal vertex of P, however, v has been exited an odd number of times.
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This is a contradiction, since P is double Eulerian. Thus u = v, and P is a

closed walk. As an immediate corollary, in(u) = out(u), and D is Eulerian. U

The following theorem shows that the Eulerian and double Eulerian property of a

digraph are equivalent.

Theorem IV.14 A weak digraph D is double Eulerian if and only if D is

Eulerian.

Proof: Suppose that a digraph D is double Eulerian. Since a double Eulerian

cycle provides a path between any pair of vertices, the digraph must be strong

(and hence also weak). By Lemma IV.13, the in-degree and out-degree of each

vertex is even. Therefore, D is Eulerian. Conversely, suppose D is Eulerian.

Traversing an Eulerian trail exactly twice yields a double Eulerian cycle. U

The Eulerian graph can be partitioned into edge disjoint cycles.

Theorem IV.15 A digraph D has an edge-factor if and only if it is Eulerian.

Proof: Let D be an Eulerian digraph. A closed Eulerian trail on D is an edge-

factor. Conversely, let F be an edge-factor of the digraph D. The in-degree

and out-degree of any vertex in each cycle of F are equal. Since the arcs on

the cycles in F partition the set of arcs in D, the in-degree and out-degree of

each vertex in D must be equal. Therefore, D is Eulerian. U
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By Theorem IV. 15 every double Eulerian cycle W2. along a digraph D defines

a specific edge-factor F. Given F we can obtain a lower bound for the measure of

W 2 ,.

Theorem IV.16 Let F = {C 1 , C2,...,C 1 } be an edge-factor of the digraph

D. The measure, m, of any double Eulerian cycle W2, in D satisfies

I
M >X IC, I2 + p.(F).

Proof: We prove this by using strong induction on k, where k is the largest

number of cycles in any edge-factor of D.

Basis Step: Let D be a digraph such that for any edge-factor F of D, IFI = 1

(i.e., no edge-factor of D has more than a single cycle). Therefore the set E

of cycles in each edge-factor of D is the set of Eulerian cycles in D. Then

F = {R} where R E E. Every double Eulerian cycle in W2. along D is exactly

two traversals of such a cycle R. Therefore, the measure of any walk in WP2 is

IR12 = E IC12 + p.(F).
CEF

(Note: p•(F) = 0 since all vertices v are on R and C = R is the only cycle in

F.)

Inductive Step: Let F = {CI, C2,... , C!} be an edge-factor of the digraph D.

Assume that the value m of any double Eulerian cycle W2, in D satisfies

I
MŽ > _ ICI" + p.(F).
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Let D be a digraph satisfying max IFI = n, and let W2. be a double Eulerian

cycle on D. Since D is finite, then at some point along W2, a vertex is repeated.

This defines a cycle in D. Let C be the first cycle completed along W2,. Let a

be the kth arc traversed on C. After a is initially traversed there are exactly

k a-arcs in C. Let a' be the jth arc on C to be traversed for the second time

along W2.. After a' is traversed for the second time, there are ICI - j a-arcs

in C. Furthermore, each step along C increases the difference of the visitation

time by one for each a-arc not in C. Since each arc in C is traversed twice, C

increases by 2 the difference of the visitation times for exactly one arc of each

edge-distance i from v (by the definition of C), where 0 <_ i <_ de(v, C) - 1.

Therefore, the set of arcs in C taken together increases the measure of the

walk 14W2, by some

ICI ICI
cc k + E(ICI - j) + 2ICIde(v, C)= ICI + 2ICIde(v, C).

k=1 j=1

Let Y = D - (C),,. After we remove C, the edge-factor for each component

of !Y has at most n - 1 cycles. Let F' = {Cf , Cq,..., C } be an edge-factor

of the digraph D'. By the inductive hypothesis the measure m of any double

Eulerian cycle on any component G of !Y satisfies

I
M > qC,12 + pv(F').

i=1
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Therefore, if F = {Ci, C2 ,..., Cf } is an edge-factor of the digraph D, then

the measure m for any double Eulerian cycle W2. along D satisfies

f
m > IC +I2 + F)

t=1

We now describe an algorithm (Algorithm D) that constructs a double Eulerian

cycle of minimum measure, beginning at a vertex v on an Eulerian digraph. Algorithm

D adds cycles to create a double Eulerian cycle whose measure attains the lower bound

of Theorem IV.16. This algorithm is similar to Algorithm A. The reader should make

note of the similarities and differences between the roles played by the edges of a graph

in Algorithm A and the cycles in the Eulerian digraph in Algorithm D. Informally

speaking, Algorithm D moves forward, entering cycles of greater distance from a

vertex v for as long as this is possible. When it is no longer possible to enter a new

cycle at greater distance, the algorithm traverses each arc on the current cycle exactly

twice and then backtracks to the previous cycle. The backtracking continues to the

first cycle from which it is possible to go forward to enter new cycles. It is clear that a

cycle C may be entered at several places along a given walk. The first edge traversed

on C cannot be at distance d > de(v, C). Algorithm D does not allow a cycle to be

entered for the first time at any vertex other than a vertex of distance de(v, C).

Algorithm D includes a subroutine Cycle2 that is recursively called through-

out the algorithm. Algorithm D constructs a double Eulerian cycle W2, by succes-
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sively selecting cycles from an edge-factor to be traversed. Each new cycle C added

has the following properties:

1. There are de(v, C) arcs in W1, that have been traversed exactly once when C
is entered.

2. No arc on the cycle C has previously been traversed.

3. If n is the last vertex encountered along the walk, then n E (C), and
d(v,n) = d.(v,C).

ALGORITHM D [Constructs a double Eulerian cycle on an Eulerian digraph be-

ginning at vertex v]

Input: An Eulerian digraph D = (V, A) of size q, a vertex v E V, and edge-factor

C = {j, c2,... I cf } as global parameters.

Output: Array P, an ordered list of the arcs constituting a double Eulerian cycle

through D beginning at the given vertex v.

Parameters: N = [nl,... ,n2,+l], P =[P,.. .,P2q], and M = [min,.. .,m], are

global arrays of vertices, arcs, and integers of size 2q + 1, 2q, and f, respectively.

Parameters i, j, and t are integers.

The following is a brief description of specific parameters:

1. The parameter ni indicates the current vertex in the walk.

2. The value of mi indicates the following about the arcs in the cycle c1:

(a) If M, = 0 then no arcs on cl are currently on the walk,

(b) If m1 = 1 then at least one, but not every arc in cl is currently on the walk,

(c) If ml = 2 every arc in cl has been traversed at least once.

3. The parameter t indicates the number of a-arcs currently in the walk.
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Algorithm D

Initially set j := 0; i := 1; t := 0; nj := v; nL := empty, 2 < k < 2q + 1;
p,:=empty, 1 <s <2q; and mh :=0, 1 <h <f.

Cycle2(N, P, M, C,j, i, t); end.

Subroutine Cycle2(N, P, M, C,j, i, t)

(D1) if [[d(v, ni) = d,(v, c,) = t] and [m, = 0]] where n, E c,,I E {1,2,...,f}
then j j + 1

Temp:= el

cj := Temp
Temp:= ml := m1 + 1

mj:- Temp
nj+j := z where (ni, x) E c3

Pi := (ni,ni+i)
i:=i+1

t:=t+1
Cycle2(N, P, M, C, j, i, t)

(D2) else if ([d(v,n,) = de(v, c) = (t - Ijc,)] and [mj - 1]] where ni E ci
then ni+1 := x where (ni, x) E ci

pi (ni, ni+i)
i:=i+1
mi :=mi +1
t:=t-1
Cycle2(N, P, M, C, j, i, t)

(D3) else if [[d(v, ni) = de(v, ci) = t] and [min = 2]] where n, E c,
then j := j- 1

Cycle2(N, P, M, C, j, i, t)
(D4) else if mi = 1

then nj+1 := x where (ni, x) E cjpi :=(n, i,
i:=i+ 1

t:=t+l
Cycle2(N, P, M, C, j, i, t)

(D5) else if mi = 2
then ni+j := x where (ni, x) E cj

pi (ni, x)

t:=t-1

Cycle2(N, P, M, C, j, i, t)
(D6) else end
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Figure 16. A digraph to illustrate Algorithm D

The following is a brief description of the conditional lines in Algorithm D:

1. Line (Dl) insures that:

(a) There are d,(v, ct) a-arcs in the walk when c1 is initially entered since
d(vc) = t,

(b) No arc on the cycle cl has previously been traversed (ml = 0),

(c) The distance to the last vertex in the walk equals the edge-distance to ct
from the initial vertex v, i.e., d(v, ni) = d, (v, ci).

(The current cycle goes from cj to cj+i.)

2. Line (D2) insures that at the completion of one traversal of the cycle cj another
cycle is not entered for the first time, rather, the walk continues to traverse cj
for a second time.

3. Line (D3) insures that when every arc in a cycle cj is traversed exactly twice,
the walk continues along the cycle cj-,.

4. Lines (D4) and (D5) guide the walk along the current cycle c, unless it is time
to initially enter the cycle cj+l (Dl), to reenter the cycle cj-. (D3), or to begin
the second traversal around the cycle ci (D2). Line (D4) is satisfied during the
first traversal of c, while (D5) is satisfied during the second traversal of cj.

5. Line (D6) ends the procedure.
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To .ilustrate Algorithm D, consider the digraph D in Figure 16. Let C be

the edge-factor consisting of the cycles X - (a7,a9,as), Y = (al,as,a6 , a1 0 ), and

Z = (a2,a 3,a 4). Initially set nj = v1; p, := empty, 1 <_ s _< 20; M = [0,0,0];

C = [X,Y,ZZ]; 0; i := 1; t := 0;

The conditional lines in Algorithm D are satisfied in the following order:

"* Cycle2(N, P, M, C, 0, 1,0) is called and the conditions for line D1 are satis-
fied with cl = C2= Y. The values for the parameters are currently 3 = 1,
C= [Y,X,Z], M= [1,0,0,...,0], n2 = v 2, pI =a,, i= 2, and T-= 1.

"* Cycle2(N, P, M, C, 1,2, 1) is called and the conditions for line D1 are satis-
fied with cq = c3 = Z. The values for the parameters are currently j = 2,
C = [X, Z, Y], M = [1, 1,0], n3 = V3, p2 = a 2, i = 2, and T = 2.

"* Cycle2(N, P, M, C, 2,2,2) is called and the conditions for line D4 are satisfied.
The values for the parameters are currently j = 2, C = [X, Z, Y], M = [1, 1.01,
n4 = v4 , p3 = a3 , i = 3, and T = 3.

"* Cycle2(N, P, M, C, 2,3,3) is called and the conditions for line D4 are satisfied.
The values for the parameters are currently j = 2, C = [X, Z, Y], M = [1, 1, 0],
ns = V2, P4 = a4, i = 4, and T = 4.

"* Cycle2(N, P, M, C, 2,4,4) is called and the conditions for line D2 are
satisfied with ci = C2= Y. The values for the parameters are currently
j = 2, C = [X, Z, Y], M = [1,2,0], n 6 = v3, ps = a2, i = 4, and T = 3.

"* Cycle2(N, P, M, C, 2,4,3) is called and the conditions for D5 are satisfied.
The values for the parameters are currently j = 2, C = [X, Z, Y], M = [1,2, 0],
nT7 = V4 , P6 = a3 , i = 4, and T = 2.

" The remaining conditional lines are satisfied as follows: D5, D3, D4, D4, D4,
D2, D5, D5, D1, D4, D4, D2, D5, D5, D3, D4, and D6 ends the program.

We find the sequence of arcs traversed to be

P = [aI, a2, a3, a4 , a 2, a3 , a4 , as, a6, alo, a,, as, a6, a9 , as, a7, a9 , as, a7, ajo].
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We now show that Algorithm D constructs a double Eulerian cycle W whose

measure achieves the lower bound given in Theorem IV.16. First we need to show a

relationship between adjacent cycles in an edge-factor of a digraph.

Lemma IV.17 For an edge-factor F of D = (V, A), let C E F and v a vertex

where de(v, C) > 0. There exists a cycle P E F adjacent to C such that

d,(v,P) < de(v,C).

Proof: Let F be an edge-factor of D where C, P E F. Let d(v, x) = de(v, C)

where x E (C), and {f1,... ,aj} is the set of arcs incident to x. Without loss

of generality, let a, and a 2 be arcs in C. Then the minimal length walk W

between v and x does not include either of a, and a 2 else there is a vertex

z E (C), such that d(v, z) < d(v, x). Without loss of gererality, let ak be the

arc incident to x in W. Therefore, C is adjacent to a cycle P where x E (P),

and de(v, P) < de(v, C). M

We now show that the walk constructed by Algorithm D visits every edge

exactly twice.

Lemma IV.18 For a given edge-factor F = {C 1 , C2,..., C1 } of the digraph

D = (V, A) and a vertex v E V, Algorithm D constructs a double Eulerian

cycle along D beginning at vertex v.
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Proof: We prove, by strong induction on the edge-distance to a cycle C E F

from the initial vertex v, that each arc in D is traversed exactly twice.

Basis Step: Let F be an edge-factor of a digraph D. The initial step of the

walk beginning at vertex v is along a cycle Co where de(v, Co) = 0. The walk

continues along the arcs of CO until each of the 3 criteria (on page 64) are

satisfied for a new cycle to enter the walk. The edge-distance from v to a new

cycle added to W, is greater than the distance of the current cycle. As there

are only a finite number of arcs in each cycle and only a finite number of cycles,

eventually during the traversal of any cycle there will be no adjacent cycles of

greater edge-distance that have not been initially entered. When the current

cycle is exited it is to a cycle of smaller edge-distance from v. This can only

occur after each of the arcs of the current cycle have been traversed exactly

twice. Since there are only a finite number of cycles and Co is the cycle of

smallest distance on the walk, Co must eventually be revisited and traversed

exactly twice. A similar argument insures that every cycle of distance 0 is

traversed exactly twice.

Inductive Step: We now assume that the algorithm traverses each cycle C" of

distance n from v exactly twice for all n < k. Let Ck be a cycle of edge-distance

k from v. By Lemma IV.17 there exists an arc ak-1 of edge-distance k - 1 on

a cycle Ci adjacent to Ck where d.(v, Ci) = i, 0 < i < k. Therefore, on the

first or second traversal of Ci, the conditions for the new cycle Ck to enter the
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walk are satisfied and Ck, is entered. From the discussion above, Ck will then

be traversed exactly twice. M

We have seen that Algorithm D completes a double Eulerian cycle. We now

discuss the number of a-arcs existant at each step of the walk constructed by Al-

gorithm D. The following lemma shows that we can obtain the lower bound of

Theorem IV. 16.

Lemma IV.19 Let F be an edge-factor of the digraph D = (V, A). The min-

imum measure of a cycle W2, generated by Algorithm D is E IC12 + p,(F),
CEF

where p,,(F) is the posture for the factor F.

Proof: By Lemma IV.18, Algorithm D produces a walk W2. that traverses

each arc of an Eulerian digraph exactly 2 times. Furthermore, when the first

arc, a,, in a cycle Cj of distance j from v is traversed in Algorithm D for

the first time, there are exactly j a-arcs along W2.. This follows from line

(DI) of Algorithm D, the conditional statement governing when new cycles

can initially enter W412,. When the k"h arc ck in cycle Ci is traversed for the

first time, there are exactly j + kI- 1 a-arcs in Wi,. Therefore, the first traversal
IC., I

of each arc in C, adds •(j + k - 1) to the measure of the walk. When the kth
k=1

arc of the cycle Cj is traversed for the second time, there are j + ICI + 1 - k

a-arcs in W2,. Therefore, the second traversal of each of the arcs in C, adds

-f,



IC1 I
E(j + ICe + 1 - k) to the measure of W2,. It follows then that including the
k=1

cycle Cj in the walk W2, contributes

10
(j+k-1)) + ( "' 1 - k)

( + ICI - 1)(j + IC) ( - 1)(j) (j + IC)U + IC + 1) (j)(+1)
2 2 2 2

- JC!2 + 2j)ClI to the measure of W2 ,. Summing over all cycles in F yields

E (ICI2 + 2jICt) = E (ICI2 + 2d.(v, C)lCI) = E IC12 + p,(F).
CEF CrF CEF

Hence, the minimum measure of W2, is min E IC!2 + p.,(F). U
F CEF

Theorem IV.20 Let F be an edge-factor of the digraph D = (V, A). The

value of D is min E IC12 + p,(F), where pv(F) is the posture for the factor
F CEF

F.

Proof: Follows directly from Lemma IV.19 and Lemma IV.16. U

Corollary IV.21 Let D be an Eulerian digraph. Let Wv be a double Eulerian

cycle on D that produces the value of the graph. Then v E MF(D).

Proof: Follows immediately from Theorem IV.20 and the definition of MF(D),

the mean of the factor F. U
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Size of the Cycle
1 2 3 4 5 6 7

0O 1 2 3 4 5 6 7

Distancefromv 12 3 4 5 6 7 8 9
25 6 7 8 9 10 11

3 7 8 9 10 11 12 13
4 9 10 11 12 13 14 15

Table V. Average cost of arcs in particular cycles

We have shown that the value, v, of an Eulerian digraph D is given by

V = min E IC12 + p.(F), (IV.1)
F CEF

where F is an edge-factor of D.

Table V lists the average amount each arc a adds to the measure of the walk

when a is in a cycle of size ICI for 1 < ICI 5 7 where 0 < de(v, C) < 4 from the initial

vertex v. It follows from the discussion above that the value in the (i,j) position in

Table V is 2i + j.

We can modify algorithms that find the median of a graph in a straightforward

manner to find the posture of a directed graph for a given edge-factor. Finding all the

edge-factors of a directed graph, however, can be extremely difficult. It is not obvious

how to determine a priori an edge-factor that produces the double Eulerian cycle of

minimum measure, hence the value, of a digraph. The following two lemmas, however,

remove certain edge-factors of a digraph D from consideration when generating a cycle

with minimum measure.
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Lemma IV.22 Let F be a reducible edge-factor of D = (V, A) where X E F

can be reduced to cycles A and B. Then

X ICl2 + d,(V, C) < 1 ICl2 + d,(v, C).
CEFAB CEF

Proof: If X E F can be reduced to the two cycles A and B then either

de(v, A) or d,(v, B) (or both) are equal to d,(v, X). Without loss of generality

let de(v,A) = d.(v,X). But de(v,B) < de(v,X) + [L j, since B can be at

most half way around A. It follows that

IX12 + 2(de(v,X))(X[ = IA + B12 + 2(de(v,X))IA + BI

- JAl 2 + IB12 + 2AIJIBI + 2(d.(v,X))IAI + 2(de(v,X))(BI

= (Al2 + IB12 + 2(de(v, A)) AJ + 21BI (JAl + d,(v, X))

> ,Al 2 + IB12 + 2(d,(v,A))IAI + 2IBI (L- 1 + d(V, X))

_ Al2 + 2(d,(v, A))IA( + IBI2 + 2(d.(v, B))IBI.

Therefore,

SICl2 + d(V, C) < .IC 2 +de(V, C).
CEFAB CEF

Corollary IV.23 Let F be a reducible edge-factor of D = (V, A). Then a

double Eulerian cycle that defines F does not produce the minimum measure

for D.

73



Proof: Follows directly from Lemma IV.22 and Theorem IV.19. U

Equation IV.1 suggests that minimizing the sum of (iC12)'s in the edge-factor

should reduce the measure of a double Eulerian cycle. One would expect the cycles

in the edge-factor that yield a double Eulerian walk of minimum measure to manifest

the same properties as cycles that minimize the sum of the squares of their lengths.

Lemma IV.24 Let A = {AJ _ A2 > ... _ A, > 0) be a partition of the
t

positive integer K. Then A is the partition that minimizes F A,2 if and only if
i=1

Al - A, < I

Proof: Let A be the partition that minimizes Z=j A,2. Assume A, - A, > 2.

Then

(A, -1) 2 +(At+1) 2 = A,2 +1I-2A, +At 2 +1+2At

= A, 2 +At 2 +2+2(At-Al).

Since A, - A, _ -2 it follows directly that (A1)2 + (At) 2 > (Al - 1)2 + (At + 1)2.

Therefore, Al and A, are not in the partition A that minimizes the sum of the

squares. U

Loosely speaking, a factor whose cycles are as nearly as possible equal sized

should produce the smallest measures. In the next section we apply this heuristic to

the Good - de Bruijn digraph to obtain the values of these digraphs.
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D. THE VALUE OF THE DE BRUIJN DIGRAPH

Lemma IV.24 shows that an edge-factor that minimizes the sum of the squares

of the cycle lengths in a digraph minimizes the differences between cycle length. Every

edge-factor of B,, includes at least one cycle of length at least n + 1. For example,

the (n + 1)-tuple 000... 1 representing an arc in B,, must belong to a cycle of length

greater than or equal to n + 1. Additionally, if arc a, represented by the (n + 1)-tuple

of all zeros, 000... 0, is not a member of the cycle C = (0) of length 1, then it is

an arc in a reducible cycle. Corollary IV.23 showed that reducible cycles are never

permitted in the factor that generates a walk of minimum measure. Therefore, the

cycle (0) will appear in the factor yielding the value of the Good - de Bruijn digraph

B,,. It follows that the minimum difference between the lengths of cycles is at least n

for any edge-factor of B,, that produces the value. Therefore, if F is an edge-factor of

irreducible cycles in B,, there have to exist cycles in F whose lengths differ by at least

n. We would want the lengths of the cycles in F to be equal, but we now see that F

must have a cycle of length 1 and a cycle of at least n + 1. The following theorem by

Golomb [Ref. 6] insures that the cycle sizes in the edge-factor PC&P+, differ by at

most n.

Theorem IV.25 (Golomb) Let the edge-factor of B,, be generated by the

PCR&+,. Then the only cycles appearing are those of length d, where dl (n + 1).

In [Ref. 6] it is shown that there are two possible cycles of length 1, (0) and

(1), only one cycle of length 2, (10), two cycles of length 3, (011) and (001), and in
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general (n p(d)21 cycles of length n, where p is the M6bius p-function and the

summation is extended over ah divisors of n.

The value of B,, is a function of the edge-factor of B,, and also of the distances

to the respective cycles of the factor in the underlying graph of B", . Further, the

distance between cycles in an edge-factor of BA, and the initial vertex v of the minimum

double Eulerian cycle affect the value of B,, . A closer examination of Equation IV.1

suggests that if the distance to cycles of larger length in F from the initial vertex v

tend to be smaller than the distances to cycles of smaller length, the edge-factor F

should generate a smaller measure.

The directed distance, dD(x,y), between x = (Z0, z,... , ,,_) and

y = (yo,yj,...,y,,-) in Bn, is n - -7 where -y is the longest string of consecu-

tive bits where (,--,,Xn-+,..., ,Xn- 1 ) = (Yo,y,.-..,y_--i). For example, in B 4,

dD(0001, 1001) = 4 - 1 = 3 since the longest string shared by the last consecutive

bits in 0001 and the first consecutive bits in 1001 is the single bit, 1. It follows

immediately that the directed distance between any two vertices in Bn, is at most n.

The distance d(z, y) between x and y in B,, is n - C where ( = max(-y, , c)

and

* ic is the longest string of consecutive bits satisfying the equality

(Yn-pt, Y-,t-+l,- ... ,iYn-1) = (X0, X1,.. ., X-O)

0 C = 2(n - v) where v is the longest string of consecutive bits shared by both
x and y.

• -y is defined above.
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In B4 , for example, d(0001, 1001) = 4 - max(I,0,2) = 2. This observation

allows for a simple way to find the edge-distance de(v, C) in GB. between a vertex v

and a cycle C generated from the PCR,,+ 1 .

Lemma IV.26 Let F be the PCP&+, edge-factor of B,,. Let 6 be the distance

from a vertex v E V to a cycle C in F. Then there exists a directed path

between v and x E (C), of length 6 in B,,.

Proof: Follows directly from the discussion above. U

Lemma IV.27 Let F be the edge-factor of Bn generated by PCRn+,,

v = 00 .. 01 .. 1and = ICI for some C E F. Then d(v, C) >__ n - a.

LJ IN T

Proof: If C is a short cycle in PCR,,I+, i.e., ICI = a < (n + 1) and al(n + 1),

then at most a bits of any vertex in (C), coincide with any cyclic shift of the

n-tuple, v = 00... 011... 1. Therefore, the shortest path from v to C is of

L2J r[1
length at least n - a. U

From Theorem IV.25 we see that the PCRI+, edge-factor possesses the prop-

erties that should minimize the sum of the squares of the cycle lengths. From

Lemma IV.27, we find that in the PCR,,I+ edge-factor the lower bound on the dis-

tance between larger length cycles and the initial vertex v = 00... 0 11 ... 1 is always

LIU r21
smaller than the lower bound on the distance between smaller cycles and v.
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The following two theorems insure that the PCR,+1 cycles in B,, are irre-

ducible. Proofs of the theorems can be found in Mykkeltveit [Ref. 201.

Theorem IV.28 The mazimum number of adjacencies between tul arbitrary

cycles in the PCRP+I is 2.

Theorem IV.29 There cannot be more than one adjacency between a cycle

with submaximal length (< n + 1) and any other cycle in the PCR+I-. Two

cycles, both of which have submaximal length, can not have any adjacencies.

The ideas and concepts developed in this section and an exhaustive search of

all double Eulerian walks in B_, 1 < n < 5 support the following conjecture:

Conjecture IV.30 Let the PC&P,+, cycles be the edge-factor F of the digraph

B,, and v = 00.011..1 the initial vertex in a double F eir-n walk produced

tLAj r 21
by Algorithm D. Then W,, generates the minimum measure over all double

Eulerian walks on B,,.

The PCR.+1 factor can be constructed in an efficient fashion using the 0 Al-

gorithm of Fredricksen and Kessler [Ref. 26). Table VI provides the measure of the

double Eulerian cycle W2 . generated by Algorithm D using the edge-factor of the

PCR,+, and v= 00..l for 1 < n < 11. The numbers for 1 < n < 4 were
t12J r21

found independently by Harper [Ref. 27].

78



n value
1 8
2 24
3 72
4 200
5 524
6 1,400
7 3,420
8 8,352
9 19,476
10 45,232
11 101,722

Table VI. Conjectured values for B, 1 < n < 11

a16

000
00//alo •!a014

a1  0  0

100
all a7 lta 6  a9

101

01'1 m 10

a\, /a 3
111

a 2

Figure 17. The Good - de Bruijn digraph B3 with a cycle generated by Algorithm D
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It turns out that the double Eulerian cycles generated by Algorithm D using

the edge-factor F of the PCR,+s and v = 00... 011 ... 1 are not the only walks of

L -2%j fr12
minimum measure in B,. In Figure 17, for Example, a double Eulerian walk

W = = (al,a 2,a 2 ,a 3 , a 4,as, al,a3,a 4,a 6,a7, a6, a6 , as, asa 9 ,

alo, all, as, a9 , alo, a1 2 , a 13, a 14 , alS, a 12 , a1 3 , a14, a 16 , a 16, a 1 5 , a1 1 )

is generated by Algorithm D using the edge-factor of PCR4 and v = 001. By an

exhaustive search, we know this walk has the minimum measure of 72 for any double

Eulerian cycle on B3. W, was generated using cycles of lengths 4,4,4,2,1, and 1. The

double Eulerian cycle

W2 -= (a,, a2, a2 , a3, a 4 , as, al, a3 , a 4 , a6, a7, a6, a7, a(, a8, a9,

a 14, a15, all, as, a9 , a14, a 16, a 16 , a1s, a12, a 13, a1o, a 12, a 13 , a10 , a11)

also has a measure of 72 and uses cycles of lengths 5,4,3,2,1, and 1. Thus, we see

that walks of minimum measure are not restricted to the PC&4,+, edge-factor. We

have not, however, found an edge-factor in B,, where the length of the largest cycle

is greater than n + 2 that also generates a walk of minimum measure in Bn.
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V. A RANDOMNESS PROPERTY OF DE
BRUIJN CYCLES

"Living backwards," Alice repeated in great astonishment. "I never heard of

such a thing."

"...but there's one great advantage in it, that one's memory works both ways."

"I'm sure mine only works one way," Alice remarked. "I can't remember things
before they happen."

"It's a poor sort of memory that only works backwards," the Queen remarked.

Through the looking glass, Chapter 5

A. INTRODUCTION

A strong statistical dependence exits between the predecessor and successor of

each state of a binary feedback shift register (FSR). The consequences of randomly

selecting each successor state from a choice of two possible states proves have interest-

ing consequences. Selecting the successor state actually can modeled a rather simple

Markov process, since the two possibilities can be assigned probabilities. We show

that the distribution of runs in a binary de Bruijn cycle coincides with the expected

distribution of runs for a binary sequence of length 2" generated by randomly selecting

the successor state in a binary FSR.

B. THE BALANCE PROPERTY

A binary sequence S is said to have the balance property if the number of l's

in S equals the number of O's in S [Ref. 6].
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Theorem V.1 A de Bruijn cycle has the balance property.

Proof: A de Bruijn cycle of length 2" has the property that every n consecu-

tive bits are different on a given period. Expressed in decimal notation, each

n-tuple can be thought of as representing an integer from 0 to 2" - 1. In this

range there are 2Th- odd integers and 2 n-I even integers. Thus, a de Bruijn

cycle contains 2`- I's and 2 `-1 O's and will therefore always possess the bal-

ance property. a

By a simple counting argument we find that the size of the set of all balanced
2ns

binary sequences of length 2" is (2-,), where (n) = C(n, r) is the binomial coefficient

of n things taken r at a time. A de Bruijn cycle can be normalized by requiring that

the sequence begin with exactly n consecutive O's. There are then (2-- noaized

sequences of length 2" that possess the balance property. This follows since the n

consecutive O's must be preceded and followed by a 1.

For example, when searching the 2S-long binary sequences for the 2,048 de Bruijn

cycles, there are (2) = 60, 108,390 sequences of length 2' that possess the balance

property. There are, however, only '24-5) - 4,457,400 normalized balanced se-

quences of length 2'.
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C. THE RUN PROPERTY

A binary sequence S is said to have the run property if among the runs of

ZEROs (and ONEs) in S, one-half of the runs are of length one, one-fourth are of

length two, one-eighth are of length three, and so on, as long as these fractions provide

an integer value for the number of runs.

Theorem V.2 A de Bruijn cycle has the run property.

Proof: The run structure of a de Bruijn cycle S,, can be completely deter-

mined. A run of ZEROs of length n occurs exactly once in Sn. This run

of ZEROs of length n must be preceded and followed by a 1, or the n-tuple

(00... 00) would appear at least twice in S,,. The n-tuple (100... 0) of a I

followed by (n - 1) O's occurs exactly once in the sequence. This, however, is

already accounted for by the run of ZEROs of length n. Thus, there is no run

of ZEROs of length n - 1. To find the number of runs of ZEROs of length k,

for 1 <- k < n - 2, we consider all n consecutive terms of the sequence that

begin with a 1, then the k-tuple (00... 0), and then a 1. Each such run can be

made to correspond to an n-tuple t of the form

t = 100...OlXz...X,
k n-k-2

where the x's are chosen as arbitrary bits. Since we are free to choose each of

the remaining n - k - 2 components, there are 2n-h-2 runs of ZEROs of length
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n Run Distribution: Dn1 {1}
2 {2}
3 {1,3}
4 {1,1,2,4}
5 {1, 1, 1, 1,2.2,3,5}
6 {1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,6}

Table VII. Distribution of runs in Sn

k for I < k < n - 2. With the single run of ZEROs of length n, the result

follows. The same distribution holds for runs of ONEs. U

The multiset of the lengths of the runs of ZEROs (ONEs) in a 2n-long de Bruijn

sequence is denoted by D,,. Table VII is a list of the ZERO and ONE run distribu-

tions, D,,, for a sequence Sn E Sn, where 1 < n < 6. Any sequence of length 2 n

whose run distribution is a permutation of the multiset D" has the run property. We

alternatively indicate such multisets by specifying the number of times each different

type of element occurs. Thus, D5 can also be denoted by {4 .1,2- 2,1 .3,1 5} where

4, 2, 1, and 1 are the repetition numbers of the entries 1,2,3, and 5, respectively. The

repetition number of each element k E Dn is denoted by rD.(k), where

2n-1-2 if 1<k5<n-2
rD,,(k) = (V.1)

1 if k =n.

A binary sequence can be interpreted as a sequence of integers representing

the lengths of the alternating runs of ZERO's and runs of ONE's in the sequence. We

have seen that a binary 2n-long sequence S corresponds to the run sequence R [See

Chapter III, Section C]. The run sequence R consists of the subsequence Z, of the
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lengths of the runs of ZERO's interleaved with the subsequence 0,, of the lengths of

the runs of ONE's. The sequences Z,, and 0,, for any de Bruijn cycle S,, of length 2n

will always be permutations of D. because of the run properties of S.

In an arbitrary binary sequence of length 2" possessing the run property, there

are (2,212,2 ....2n-3) = 20 !21, 22.2...2,,- , ways that the runs of ZEROs may be arranged.

We can, however, normalize the binary sequence (i.e., let it begin with the string of n

consecutive ZEROs), and then there are only (2,2.2- 3 )_ways to position the 2-2

runs of ZEROs. Hence, there are

20,21,22,...,2n-3 21,22,...,2n-3

normalized binary sequences of length 2n possessing the run property where the first

factor counts the runs of ONEs and the second factor counts the runs of ZEROs.

As an example, in a normalized binary sequence of length 2' possessing the

run property, there are (4) = 105 ways that the runs of ZEROs may be arranged.

The runs of ONEs can be independently arranged in 1,2,4) = 840 ways. Hence, the

2,048 de Bruijn cycles of length 2' are a subset of the 105 x 840 = 88,200 normalized

binary sequences possessing the run property.

Clearly, not every permutation of Zn and 0,, generates a de Bruijn cycle.

Interestingly, there is no de Bruijn cycle of length 25 with either Z5 or 05 equal to

(51312121), (51121132), (51123211), (51212131), (51213121), (52113112), or

(52311211). This begs the question of why specific permutations of D, cannot occur

as Zn or 0,, in a de Bruijn cycle that is answered in the following section. (Note:
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When S, is viewed as a cycle, care must be taken not to break the run sequences

across a run when the sequence is cycled.)

D. A RANDOMNESS PROPERTY

A binary sequence of length 2' having the balance and run property is not

necessarily a de Bruijn cycle. For example, the balanced sequence 0000111100110101

has the run property, but clearly this is not a de Bruijn cycle. We show that if the

run sequences Zn and O,, of a balance binary sequence with the run property are

arranged randomly, the resulting binary sequence is de Bruijn. We define what we

mean by randomly in the sequel.

The simplest possible non-trivial experiment is one that may result in either of

two possibilities. Such an experiment is called a Bernoulli trial and the two outcomes

are labeled as 1 or 0 (success or failure). This framework is used in what follows.

Let A and B be copies of the multiset Dn. Suppose the elements from the

multiset A are viewed as being placed randomly between the positions of another

circular permutation of the second multiset B. The interleaving of A and B generates

a run sequence R. (We view A as the multiset of the lengths of the runs of ZEROs

and B as the multiset of the lengths of runs of ONEs.) Given an arbitrary element j

in B, let X, be a binary indicator variable defined on j satisfying X, = 1 if and only

if an element 1 from A is to the immediate right (TTIR) of j, otherwise X, = 0. The

probability function for the discrete random variable X, is

px,(x) = P(XI = x), for x E {0,1}.
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Since the element I E A accounts for 2 '-2 of the 2'"-3 elements in D., it follows

immediately that px, (1) = .5 = Px1 (0). The expected value for X, is

E[X1 ] = , xpx,(x) = 0(.5) + 1(.5) = (.5).

The expected value of X, is the probability that a 1 E A is TTIR of an element in

B. We know that the expected value of a sum is the sum of the expected values. The

expected number of l's of A that are TTIR of all of the entries j in B is denoted

Eli;j] = lrD.(j), where rD.(j) is the repetition number of the element j in the

multiset D,. From Equation V.1, it follows that

E[l;j] = { 1 j n -2 (V.2)

2-1 ifj =n.

E(1; j] is an integer except when j is either (n -2) or n. We find it necessary to specify

the expected number of l's that are TTIR of (n - 2) or TTIR of (n) in B, denoted

E[1; n - 2, n], so that an integer value is realized. We then find E[1; n - 2, n] = 1.

Similarly, we define X 2 on j E B to be a binary indicator variable where

X2 = 1 if and only if a 2 in the multiset A is TTIR of j, otherwise X 2 = 0. It follows

immediately that px2(1) = .25, px2 (O) = .75 and E[X 2] = 0.25.

The expected number of 2's that are TTIR of all the j's in B, denoted E[2; j]

is equal to (.2 5)rDn(j). From Equation V.1, it follows that

2n-j-4 if 1 _ j <n - 2
E[2;j] = (V.3)

2-2 if j= n.
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.i I I I I

In general, we define the random variable Xk on j E B to be a binary indicator

variable where Xk = 1 if and only if a k is TTIR of j, otherwise X, - 0. The

probability function for Xk is given as

2-k iflI<_k <_n- 2

PX. (M = (V.4)
2-k+2 if k=n,

and Pxk(0) = 1 - Pxk(l). The expected value of X1 is given by

2-{ if l<k<_n-2
E[Xk] = (V.5)

2-k+2 ifk=n.

The following Lemma provides the expected number of elements TTIR of each

type of element when random permutations of D, are interleaved.

Lemma V.3 If elements from A = D, and B = D, are placed randomly in

alternate order, TTIR of all the j's in B we expect to find exactly Elk,j] k's

in A, with

2 n-j-k-2 if 1 j,k<<n-2

2-• ifl~k<n-2 andj~

E[k,j] = (V.6)

2-j ifk=nandl<j<n-2

2 -k+2 ifk,j = n

and where the multiset Dn represents the run distribution for a 2n-long binary

sequence possessing the run property.

Proof: Follows directly from the Equations V.1 and V.5 U
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We define the multiset

R, = {E[1; 1]. 1,E(2; 1].h2,...,E[n- 3;.11.-3n ,

where R, is the submultiset of integers of A that represent the elements that are

expected to be TTIR of all the l's in B. Recall that E[k; j] = E[Xk]rD.(j). Therefore,

R, = {E[Xl]rD.(1) 1, E[X2]rD.(1) . 2,..., E[XI,,_]rD.(l) .n - 3}.

In like manner, R2 = {E[1; 2]. 1, E[2; 21. 2,..., Efn - 4; 2]. n - 4}.

We define the multiset Rh = {E[1; k]I, E[2; k].2,..., E[n-k-2; k]-k}, where

1 < k < n - 2. The multiset Rh is the submultiset of integers of A that represents

the elements that are expected to be TTIR of all the k's in B.

In general, let a be a submultiset of B and define R& to be the multiset of

integers that represents the elements in A that are expected to be TTIR of all the

elements in a. If a and 0 are multisets in B, R& = R6 if and only if Ial and 1,31.

In a similar manner, we denote the multiset of integers that represent the

expected elements from A that are TTIR of all the ji's, j2's, ... , j.'s, in B by

R. We define R1 = R(k+l.k+2,...,-2,n).

Lemma V.4 R- = R for every 1 < k <n - 2

Proof: We need to show that Jki = -- kl. By Equation V.1, rDA(k) = 2 n-k-2

for 1 < k < n-2 and rD.(k+ 1)+...+rD.(n--2)+rD.(n) = (En•=-k- 2k) + 1.

n-k-3

Let 1: 2 k = S. Then 2S - S = S = 2 n-k-2 - 1. It follows immediately that
k=1

rD.(k) = rDn(k + 1) + .+ rD.(n - 2) + rD.(n). Therefore, RH =R. U
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As an example, let E6 be a binary sequence whose run sequence consists of

alternating terms from two respective multisets D6 that have been randomly inter-

leaved. Let Z6 be the sequence of run lengths of ZEROs and 06 the sequence of run

lengths of ONEs. We would expect the following:

1. Exactly four l's, two 2's, and one 3 in Z4 are TTIR of the l's in 06.
R, = {1,1,,1,2,2,3}.

2. Exactly two l's and one 2 in Z 6 are TTIR of the 2's in 06. R2 = {1, 1,2}.

3. Exactly one 1 in Z6 is TTIR of the 3's in 06. R3 = {1}.

4. Exactly one 1 in A is TTIR of either the 4 or 6 in 06. R(4.s) = {1}.

Similarly, we may continue to determine the expected values of the elements that

must be TTIR of the elements in the multisets R, and R2. For example, we define

the multiset

Rill = {E[XI]E[I; 1]. 1, E[XI]E[2; 1]. 2,..., E[XI]E[n - 4; 1] n - 4},

where Rl/l is the multiset of integers that represents the elements expected TTIR of

all the l's in Rl.

In general we define

Rxl..Ij,= {(E[X 11)k-1 E[1; X11 1, (E[X 2])k- 1 E[2; X1 ] . 2,...,

(E[Xp])k-I E[p; Xi] p,},

where p = n - z- ... X - 2. The range of values for p insures integer values

for the representative numbers in RZll...Ixk. It follows from Equation V.6 that

R.I...I• 1 }{1 when xl+...+x,= n - 3. (V.7)
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From Equation V.6, one sees immediately that E[k, 3 ] = E[j, k]. Therefore, since

multiplication is commutative,

R /.../ = R,% ,/.../ i

where yi,.., yk is any permutation of xi,.., xk. Hence,

RZ,/.../z, = R(r,+...+X,) (V.8)

Continuing the above example, we also expect to find the following in E6 :

1. Exactly two l's and one 2 in 06 are TTIR of the l's in Rl. Rill = {1, 1,2}.

2. Exactly one 1 in 06 is TTIR of the 2's in Rl. R1/2 = {1}.

3. Exactly one 1 in 06 is TTIR of the l's in R2. R2/1 = {1}.

This process can continues until Rti/.../M. = {1}. This will occur when

xil+ ... + ,n,= n -3.

Concluding the example, we also expect exactly one 1 in 06 TTIR of the

two l's in Rill, therefore, R11111 = {1}. Furthermore, since R, = {1, 1, 1,1,2,2,3},

it follows that Ry = R(2,3,4,6) is also equal to {1, 1,1, 1,2,2, 3}. In a like manner,

R- = R(3 ,4 ,6) = {1, 1, 2}, etc.

A binary sequence whose run structure consists of alternating terms from D,

with the expected distribution of elements to the immediate right and left of each like

of element in Dn, is said to have the Expected Value Property.
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A binary sequence of length 2" with the Expected Value Property exhibits the

following:

2n-4(k+3) 2 n-(k4 - 22
R1= {1,

R2 = {• • .. (n - 5), (n - 4)},
2,n-5 2",-6 21

R-i = R,,

Rk = {1..1, 2,..., 2....!n -(k + 3)), (n -(k + 2)},
2n--(I+3) 2n--(k÷4) 2"

R1 = Rk

Rn_3 = J1}, and

R;;--_3 = R(,,-2,,) "- Pn-3.

Equations V.7 and V.8 have far-reaching implications. In particular, they provide a

connection between the Expected Value Property and de Bruijn Sequences.

Theorem V.5 A binary sequence S of length 2" is a de Bruijn cycle if and

only if the run sequences of S possess the Expected Value Property.

Proof: Let S be a binary sequence with the Expected Value Property. Since

S consists of alternating terms from two copies of D, it follows immediately

that S has length 2".
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Let Sj be the sequence formed by cyclically shifting S by j bits to the left. The

sequence S has 2" distinct n-tuples if and only if for every j, 1 _< j < 2", the

sequence formed by the sum Sj E S does not contain a string of n consecutive

O's.

Let S possess the interleaved run sequences On and Z,, each of which is a

separate permutation of D,, for 1 _• j < 2". Let T be the longest consecutive

string of O's from the sum sequence S' E S. The length of T is ITI = t. Let

R = (rl,r2, ... , rt-1, rt) and W = (WI, W2,..., wt-1, wt) be the consecutive bits

from Sj and S, respectively, such that R E W = T.

Since T is the longest consecutive string of zeros, the bit ro that immediately

precedes R and the bit wo that immediately precedes W must differ. Without

loss of generality let ro = r, = 1. Define k by w, = w2 = * -- =Wk-.I = Wk but

wk j Wk+1. Then k is the length of a run of ONEs in W.

We now show by contradiction that the sequences S has no repeated n-tuples.

Since the run lengths in S are elements in D,, k < n - 2, we know that

R(,,k+,....,,-2,,) = Rk-j. With k - 1 _< n - 3, the properties on page 92 and

equation V.8 can be used. Let xI, X2 ,.. ., X. be the lengths of the runs that

coincide after the bits rk and wk. Let xP, where p < m be the length of the

last runs in R and W that concide, where (k- 1) + x, +... + +n _ (n- 3) and

(k-1)+x÷+r +xp+x÷p+ > (n-3). Let (k-1)+xa +...+P = n-d, where
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d > 3. Since Rk-ll,11...l = R•-d, it follows that zp+l > d - 3. The length of

the longest run that coincides between R and W TTIR of R-d, however, is

d-3. We find, therefore, that (k-1)+xI+÷ ..- -+x = n-g 5 n-3. The length

of the longest string of bits that coincides TTIR of &-,,, however, is g - 2.

Since (k-i)+xi+- .+x,,, = n-g, it follows that k+x÷l +-l-+xm+g-2 = n-I

is the length of the longest string of bits that coincide. Therefore, S has no

repeated n-tuples and is therefore a de Bruijn cycle.

Conversely, let S be a de Bruijn cycle. Since S is de Bruijn, it consists of

alternating terms from D,, and S has the Run Property. Consider the runs

of ONEs of length r where 0 < r < n - 2. Each such run can be made to

correspond to an n-tuple along the sequence S of the form

01. 0,zx-...x,
r n-r-2

where the x's are arbitrary bits. The number of runs of ZEROs of length j

where n - r - j > 0 that are TTIR of the runs of ONEs of length r is 2nr-2

This coih. ides with the expected integer values given by Lemma V.6. Hence,

the Expected Value Property for S follows immediately from the Run Property

and the uniqueness of the n-tuples in a de Bruijn cycle. Therefore, a binary

sequence of length 2 n with the expected value property is a de Bruijn cycle. N
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Interleaving any permutation of the run sequences of D,, for 1 < n < 3 gen-

erates a de Bruijn cycle. For n = 4 we find that a sequence with the expected value

property must satisfy the following condition with respect to its run sequences: if the

sequence of runs of ONEs/ZEROs has 2 consecutive l's in it then the sequence of runs

of ZEROs/ONEs cannot have 2 consecutive l's. This condition provides a very simple

way to generate the 16 de Bruijn cycles of length 2'. There are 3 different normalized

permutations of D4 : (4,2,1,1), (4,1,1,2), and (4,1,2,1). There are 8 permutations of

D4 with consecutive l's: (4,2,1,1), (4,1,1,2), (2,4,1,1), (2,1,1,4), (1,4,2,1), (1,2,4,1),

(1,1,4,2), and (1,1,2,4). Finally, there are 4 permutations of D4 with no consecutive

l's: (4,1,2,1), (2,1,4,1), (1,4,1,2), and (1,2,1,4). The 16 de Bruijn cycles are generated

by:

1. Interleaving the two normalized runs sequences from D 4 having consecutive
l's with the four runs sequences from D4 not having consecutive 1's, and

2. Interleaving the single normalized run sequence from D 4 having no consecutive
l's with the eight runs sequences from D 4 having consecutive l's.

Table VIII displays these sequences.

In the general case, although the expected value property can be used to

generate de Bruijn cycles, it does not provide a more efficient means to construct

them than appears elsewhere.
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4 2 11 4,1,2,1 1111000011010010
2,1,4,1 1111001101000010
1,4,1,2 1111011000010100
1,2,1,4 1111011001010000

4,1,1,2 4,1,2,1 1111000010100110
2,1,4,1 1111001010000110
1,4,1,2 1111010000101100
1,2,1,4 1111010010110000

4,1,2,1 4,2,1,1 1111000010011010
4,1,1,2 1111000010110100
2,4,1,1 1111001000011010
2,1,1,4 1111001010110000
1,4,2,1 1111010000110010
1,2,4,1 1111010011000010
1,1,4,2 1111010110000100
1,1,2,4 1111010110010000

Table VIII. The de Bruijn cycles of length 2" generated by run sequences
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VI. A MEMORYLESS ALGORITHM TO
GENERATE DE BRUIJN SEQUENCES

"To change and change for the better are two different things."

German Proverb

A. INTRODUCTION

In this chapter we present an algorithm to construct a subset of all the binary

de Bruijn sequences of length 2n+1 . A comprehensive survey of previous work on this

subject can be found in [Ref. 28]. A common approach to this process is to join

cycles together to form a full cycle. This same general approach will be followed here.

The algorithm presented is not limited to joining pure cycles, however, using the PCR

feedback function and its pure cycles produces the most efficient algorithm. Unlike the

Universal Algorithm [Ref. 29), the representative vertex for each cycle is determined

by a distance function on the digraph B,, rather than by finding the smallest element

among all the vertices on a cycle. Our algorithm produces an Eulerian cycle in B,.

As this is isomorphic to a Hamiltonian cycle in B,,n+, our algorithm allows for an

interplay between vertices and arcs that provides a systematic way to join cycles.

As a consequence, we decompose the Good - de Bruijn digraph into an edge-factor

to insure each arc is traversed, rather than into a factor that partitions the set of

vertices.
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B. BACKGROUND FOR SIMILAR APPROACHES

Golomb [Ref. 61 describes the key-sequence method to generate de Bruijn se-

quences. One generates the set of span n de Bruijn sequences, S,,, from preference

functions (Pjs, P2) that are obtained from feedback formulas and from the preference

functions (P1 , P2) for the span n - 1 sequences. The key-sequence method requires

considerable memory storage to generate the sequences because every de Bruijn se-

quence of smaller span is utilized in order to generate the de Bruijn sequences of

span n.

Fredricksen [Ref. 30] shows how to generate 22n-5 full cycles of length 2" from

the prefer ones sequence using the PCRP. The method uses 6n bits of storage, and

n units of time to produce the next bit from a given n bits.

Etzion and Lempel [Ref. 311 show how to generate 2 (k)g(irk) full cycles of length

2" from the PCR/ using 3n + (k)g(n, k) bits of storage, where k is a constant in the

range 1 <_ k < 2 "t, g(n, k) • (n-2log k)(1- i- -' ). The time required to produce

the next bit from the last n bits is 0(n).

C. JOINING OF CYCLES

Common to all of the above techniques is the notion of cycle joining. When

the two possible predecessors of a state both map into the same state by the feedback

function f we say f is singular. Any feedback function that is not singular is therefore
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nonsingular. The following are equivalent conditions:

1. f is nonsingular.

2. f produces no branches.

3. f is a one to one mapping.

4. f is an onto mapping.

5. Every state has a unique predecessor and a unique successor.

6. f produces only cycles.

The following theorem [Ref. 6] is stated without proof:

Theorem VI.1 (Golomb) A necessary and sufficient condition for distinct

states to have distinct successors is that the corresponding (nonsingular) feed-

back function f: Bn+ -_+ {0, 1} can be written

f(zo, zI,... ,zn) = Zo ED fh(zI,z 2,...,zn), (VI.1)

for some function fl: Bn - {0, 1}

Any edge-factor of the digraph Bn represents a feedback function that satisfies

equation (VI.1). Furthermore, any feedback function satisfying (VI.1) will have dis-

tinct successors and the function therefore yields an edge-factor in the corresponding

Good - de Bruijn digraph.

Since B, is a 2-regular strongly connected digraph, when Bn is decomposed

into an edge-factor F containing two or more cycles, each distinct cycle is adjacent

(i.e., arc disjoint and sharing a common vertex) to some other cycle. By the following
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lemma, it is always possible to join together two adjacent cycles in a edge-factor to

form a single cycle.

Lemma VI.2 Let F be an edge-factor of the digraph D. Let (R) and (T) be

distinct adjacent cycles in F with x E (R), and x E (T),,. The cycles (R) and

(T) are joined into a single cycle when the respective successors of the vertex

x in each cycle are interchanged.

Proof: Let the following sequence of vertices, (R) = (ri, r2 ,...I, r) and

(T) = (t 1 , t2,... , t,,), represent adjacent cycles. Since the cycles are adjacent

there is a vertex x that lies in each of (R), and (T),. Let ri = tj = x. The

sequence of vertices (ri, r 2,. .. , ri, tj+l, tj+2,. •., ti, r i+, ,. . ., r) created by ex-

changing the successors of x, i.e., exchanging outgoing arcs of x, forms a single

cycle. U

To illustrate Lemma VI.2 consider the PCR3 where f(zo, z1 , z2) = zo on B2

shown in Figure 18. This function generates the edge-factor of Figure 19A. The cycles,

represented by a sequence of arcs, are:

1. C1 = (0)

2. C2 = (001)

3. C3 = (011)

4. C4 = (1)
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00 0

B 2 : 01 __ _ 010

Figure 18. The Good - de Bruijn digraph B2 as one edge-factor

C1: CI:

C2: 1 o

01 / 10 1 0

A : B : C2: 01. _ _ _ _ 1
01.. 1 101

11 0

Cr1 /0 11
11

C4: ()C3:

Figure 19. Edge-factors

101



The cycles C2 and C3 contain the common vertices 01 and 10. By Lemma VI.2

a single cycle is formed when the successors, 10 and 11, of the vertex 01 are inter-

changed between the cycles C 2 and C3, respectively. The cycles now, represented by

a sequence of arcs, are:

1. C= (0)

2. C2 = (101001)

3. C3 = (1)

This new edge-factor is shown in Figure 19B. Therefore, the problem of joining

cycles from an edge-factor reduces to finding the vertices common between adjacent

cycles.

To construct the algorithm that generates a de Bruijn sequence, a representa-

tive vertex for each cycle plays an important role and must be identified. The cycle

representative for each cycle is any vertex in the cycle that has the smallest directed

distance from a designated vertex vD in B,. (The designated vertex VD is an arbitrary

but fixed vertex in B,.) The cycle representative (Ci)R of the cycle (C,) is defined to

be any vertex vi E (C4), such that for the given designated vertex vD E V,

dD(VD,Vi) = min dD(VD,v).VE(CO).

If there is more than one vertex on a cycle of minimum directed distance from vD, we

can define a unique representative by selecting, say, the vertex of largest/smallest dec-

imal value. (Recall that the directed distance dD(X, y) between x = (xo, xl,... -)
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and y = (yo, yi,..., y,y-,) in B,, is n - f, where -y is the longest string of consecutive

bits where (x,_-,, x,_-+,.... iX-1) = (y0, yi,... 0-)

Lemma VI.3 shows that cycle representatives are unique to a cycle unless the

representative is the designated vertex VD.

Lemma V1.3 For an edge-factor F = {Ci,C2,...,C,} of B,, = (V,A), let

C, E F where dD(VD, (Ci),,) > 0 and VD is the designated vertex. Then there

exists a cycle Cj E F adjacent to Ci such that dD(vD, (Ci),,) < dD(vD, (Ci),,).

Proof: The proof is analogous to the proof of Lemma IV.17. U

Corollary VI.4 Every vertex that is the representative of its cycle but not

equal to the designated vertex vD is incident with exactly two cycles in any

edge-factor.

Proof: This follows immediately from Lemma VI.3. U

Lemma VI.3 can be applied with distance functions other than the directed

distance from a designated vertex. The representative vertex (Ci)R of the cycle Ci can

be defined as either the vertex for which dD((Ci)R, vD,) = minue(c,), dD((Ci)R, vD) or

the vertex for which d(vD, (Ci)R) = minuet(c), d(vD, (Ci)R). In either of these cases

the properties of the representative vertex remain the same and the concepts in the

next section can be applied.
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D. THE CYCLE JOINING ALGORITHM

Consider a feedback shift register with n + 1 stages. The ith state of the

FSRn+1 is denoted by Si = (s,,isi+i,.. 1s8+,4). Given a nonsingular feedback function

f on the register, the next state following Si = ($6, sil,... , Si+n) is obtained from

the Cycle Joining Algorithm as follows:

Cycle Joining Algorithm

Input: A feedback function f for a FSR,,+1 , the current state Si = (sisi,..., si+n)

of the register, and a list of representative vertices.

Output: The next state S,+,.

(Cl) if (si+i,. . , si+,) designates a representative vertex,

then Si+1 :=f(Si) E 1

else S,+1 f (Si).

(This cycle joining algorithm is analogous to others, however, it was originally used

by Fredricksen [Ref. 32].)

We can apply Lemmas VI.2 and VI.3 to provide a simple way to construct a

de Bruijn cycle of length 2n+1. At each shift of the FSR,+1 we check the last n bits in

the register. The n bits represent a vertex in Bn. If the vertex is a cycle representative

and this is the first occurrence, we expand the current cycle, by joining an adjacent

cycle in the edge-factor to the current cycle. If the vertex is not a cycle representative

we continue along the current cycle. If the vertex is a cycle representative and this

is the second occurrence, we close the current cycle and enter a previous cycle. The
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algorithm constructs an Eulerian walk WD along B, by successively selecting cycles

from an edge-factor to be added and traversed. This is accomplished by stepping along

a nonsingular shift register until the current state identifies a cycle representative at

which time the Cycle Joining Algorithm is executed and a new cycle is added.

We now describe an algorithm (Algorithm H) that constructs a Eulerian walk

along B, beginning at the designated vertex VD. Algorithm H adjoins cycles from an

edge-factor F to create the Eulerian walk. This algorithm is similar to other common

algorithms [Ref. 29] that join cycles from a factor and hence create a Hamiltonian

cycle along B,,. Here the edge-factor method allows us to use the properties of

distance in the digraph to uniquely identify a common vertex on adjacent cycles

in B,,. Loosely, speaking, Algorithm H moves forward, entering and adding cycles

at a cycle representative of incteasingly greater distance from the vertex VD for as

long as this is possible. Each cycle representative is on exactly two cycles. Algorithm

H enters a cycle representative (D)R for the first time along an arc on a cycle C

where dD(vD, (C),) < dD(vD, (D),). The algorithm immediately departs the vertex

(D)R along an arc on the cycle D. When the cycle representative (D)R is entered for

the second time, it is along an arc on the cycle D and the vertex (D)R is departed

along an arc on the cycle C. When it is no longer possible to enter a new cycle at

a greater distance, the algorithm traverses each arc on the last adjoined cycle and

then backtracks to the previous cycle at its cycle representative. The backtracking

continues to "close" previously entered cycles until the first cycle from which it is
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possible to again go forward to enter and add new cycles. A cycle C could conceivably

be entered at several places along the walk. Algorithm H, however, does not allow

a cycle C to be entered for the first time at any vertex other than at the cycle

representative (C)R.

ALGORITHM 1! [Constructs an Eulerian walk along B,,]

Input: A Good - de Bruijn digraph B,, = (V, A), a designated vertex VD E V where

VD = (v, v2,. ., v,) E B", and a shift register with a nonsingular feedback function

f of degree n + 1.

Output: A sequence (0,si,s2,... 82n+_I1) constituting an Eulerian cycle through

B..

Algorithm H

Initially set the register to S1 = (0, v,, v2,... , v,) = (Si, S2,... , s,). Step the register

once to produce S2 = (SI, s2,..., sn, f(SI ED 1)), and set i = 3.

H1 Si-1 = (si--, si,.. . , si+,) lies on cycle C. We examine each of the states
on the cycle until a state is found that identifies a vertex of greater distance
from the designated vertex than the current state. If no such state exists
(i.e. the current state identifies the cycle representative), then go to [11la],
else go to [Hlb].

Hla S, = (s,-is,,...,si+n-_l,f(S,-.)); go to [H2].
Hlb Si = (si-1, si,..., s=+n_, f (Si_) E 1); go to [H21.

H2 Increment i.

H2a If i < 2"+1 go to [H1]; else end.

We now show that the walk constructed by Algorithm H visits every edge in

B, exactly once.
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Corollary VI.5 Let F = {C 1, C2,..., C.} be an edge-factor of BA = (V, A)

and vD is the designated vertex. Furthermore, let VD be a vertex in exactly one

cycle in F. We define a graph TB. as follows: the vertices in TB,, are the cycle

representatives of the cycles in F, and there is an edge between vertices x and

y in TB,, if and only if x, y E (Ci), for some cycle Ci E F. Then T is a tree.

Proof: The order of'TB. is m, the number of cycles in F. By Theorem VI.4

for each cycle Ci E F where dD(vD, (Ci),) > 0 there exists a unique cycle

Cj E F adjacent to Ci such that dD(vD, (C),,) < dD(V,(Ci),,C). Therefore,

TB,. is connected and the size of the edge set of TBn is m - 1. Hence, TB', is a

tree. In like manner, in the case where vD is in exactly 2 cycles in F, TB. is

also a tree. M

Thus, given an edge-factor F of the digraph B, = (V, A) and a vertex vD E V,

Algorithm H joins every cycle in F and thereby constructs an Eulerian walk along

B,, beginning at the vertex VD. (Algorithm H is in fact a depth first search of TB,,.)

Since TB. is connected, every arc is traversed exactly once.

To illustrate the algorithm, consider a FSR5 and the pure cycling register

defined by the feedback function f(zo, z1, z2, z3 , z4) = zo. Let the designated vertex

vD in B4 be 0011. The edge-factor contains the eight cycles and their respective

rep -sentatives as shown in Table IX. (Note: the algorithm does not compute the

table of representatives a priori, rather, representatives are computed on line.) The

cycle (00101) has two vertices 1001 and 1010 each of the same minimum directed
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Cycle Representative
(0) 0000

(00001) 1000
(00011) 0011
(00111) 0011
(01111) 0111
(01011) 0110
(00101) 1001

(1) 1111

Table IX. Cycles and representatives for a PCR5 , where vD = 0011

distance from vD. We arbitrarily select the vertex 1010 to be the representative, as

it is of largest decimal value. Applying the Cycle Joining Algorithm to this FSRS,

tie cycles are joined together to form one cycle, shown in Figure 20. The de Bruijn

sequence representing this cycle is

00011111011100110100101011000001.

Changing the cycle representative of (00101) to 1001, the cycles are joined to

form a different sequence

00011111011100101001101011000001.

Continuing the example with the same feedback function, when the designated vertex

is changed to 1001 and using the smallest representative 0101 for the cycle (01011) a

different sequence is obtained

01001111101110010110101000110000.
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Finally, with vD = 1001 and selecting 0110 as the representative of the cycle (01011)

we get the sequence

01001111101110010100011010110000.

Each of these sequences are different (i.e., none is a cyclic shift of another). It is not

always the case that distinct vD's yield different sequences. Clearly, identical sets

of representative vertices generate identical sequences. The size of the class of de

Bruijn sequences generated by the pure cycling register using Algorithm H has not

been determined. Using just the feedback function of PCR.4, however, 12 of the 16

de Bruijn sequences of length 16 can be obtained by changing the vertex VD.

E. THE FEEDBACK FUNCTIONS

Using the PC&4, the Cycle Joining Algorithm requires storage of n bits for the

current state Si, n bits for cycling the current state, and n bits to store the current

representative on a cycle, for 3n bits of storage. The greatest amount of time in this

algorithm is spent to determine the representative vertex on each cycle. The worst

case occurs when the current state is the cycle representative and the entire cycle

must be traversed. Therefore, having an edge-factor with relatively short cycles is

desirable. For an arbitrary nonsingular feedback function, the length of the longest

cycle can be expected to be very large [Ref. 6]. Jansen et.al. provides an approximate

count on the number of linear functions that yield cycles whose maximum cycle length

is 4n [Ref. 29].
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Figure 20. An Eulerian cycle in B4
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VII. CONCLUSIONS

"Results! Why, I have got a lot of results. I know several thousand
things that won't work."

Thomas Edison

A. SYNOPSIS OF THE THESIS

The binary ie Bruijn cycle provides a special case of extracting distinct

n-tuples from a 2n-long binary sequence. Generalizing the de Bruijn property, i.e.,

extracting n bits that are not necessarily consecutive along the cycle, was the funda-

mental idea motivating this work. Thzre appears to be no previously published work

analyzing the set of complete cycles, a set that includes the well-known de Bruijn

cycles.

In Chapter III, the framework is developed to systematically comb from a

sequence every n-tuple appearing at successive positions along a subsequence of the

sequence. We found that the run structure for all but one class of complete sequences

is completely determined. The set of complete sequences with m < n consecutive

teeth defines a cycle visiting every arc an equal number of times along an appropriate

Good - de Bruijn digraph. Only the case for m = n - I is thoroughly discussed in

Chapter III. Chapter III concludes with a probabilistic argument that shows that the

size of the set of complete sequences for a specific (1, n)-comb is substantially smaller
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than the size of the set of 2w-long de Bruijn cycles. The class of de Bruijn sequences

is the largest class of complete sequences. This surprising result is not intuitively

obvious, given the randomness properties of the eligible sequences.

Chapter IV provides a comprehensive survey on double Eulerian cycles along

graphs and digraph. The necessary and sufficient conditions for a graph or digraph

to have a double Eulerian cycle are given. We describe a class of double Eulerian

cycles along a graph (digraph) that minimizes the difference of visitation times along

each edge (arc). The necessary and sufficient conditions are found to generate a

minimum double Eulerian cycle. A closed formula using the edge-status of a graph

is shown to provide the value of a graph. An algorithm is presented that, given

the appropriate edge-factor, generates the minimum double Eulerian cycle along a

digraph. A closed formula is provided for the value of a Eulerian digraph. A conjecture

for the appropriate edge-factor to generate the value of the Good - de Bruijn digraph

is made.

Chapter V provides the necessary and sufficient conditions for the permutation

of the run sequences in a de Bruijn cycle. We see that the structure of distinct

n-tuples is a randomness property of the runs in the sequence. This structure is a

specific case of the property that each arc in a walk defined by a class of complete

cycles is equally likely to be taken along an appropriate digraph Bn.

A new efficient algorithm for the generation of classical de Bruijn sequences is

developed in Chapter VI. The algorithm uses only 3n bits of storage to generate a
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de Bruijn cycle of length 2". Although this algorithm adjoins cycles in the usual way,

the class of sequences generated is different from that found by previous algorithms.

B. OPEN QUESTIONS

The scope of potential research in the area of generalized de Bruijn cycles is

vast. The very fundamental question of the existence of nonclassical de Bruijn cycles

for each value of n remains to be answered. A general formula describing the size of

the set of nonclassical sequences continues to be an elusive problem.

The formulation of an algorithm to generate a class of complete cycles for each

value of n would be a significant contribution in this area of research.

There are many different (1, n)-combs available to extract distinct n-tuples.

Further analysis on specific combs would be a valuable extension of the work done in

Chapter Il.

Proving the conjecture in Chapter IV on the value of the Good - de Bruijn

digraphs would complete an important contribution to the analysis of double Eulerian

cycles on directed graphs. More generally, finding the appropriate edge-factor of a

digraph to generate the value of a graph would be a very nice result.

The class of sequences generated by the algorithm in Chapter VI has not been

fully examined. The relation, if any, between these sequences and sequences generated

by previously algorithms would be an interesting result. Determining the designated

vertex, representative vertices, and the distance function to generate the prefer ones

sequences, for example, could provide insight into a new algorithm.
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These are but a few of the promising research areas that arise from the chal-

lenge of understanding complete sequences. A thorough understanding of nonclassical

de Bruijn sequences is an endeavor to find structure in randomness, a statement that

might be make of every research endeavor!

This appears to be the first study of complete sequences, and it portends to

be a rich area of continuing research.
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APPENDIX A. SUMMARY OF SOME
PREVIOUS WORK ON CIRCUITS IN

DIRECTED GRAPHS

"In all things, there is a law of cycles"

Tacitus

The following is a brief summary of the derivation of Theorem 111.3. This

theorem allows one to easily determine the number of ways to traverse each arc of

an Eulerian digraph exactly a- times. The development follows the work by van

Aardenne-Ehrenfest and de Bruijn [Ref. 12].

Let S. be the permutation group (or symmetric group) on m elements. If S

is a subset of S,. then the number of elements of S of order m is denoted by I SII and

the total number of elements in S by ISI. A subset D of S,. is called a D-set (in Sm,),

whenever it has the property that I I-01 I has the same value for all s E Sm.

Let k and n be natural numbers, and take m = kn. Consider the set En of

m elements, divided into k systems, each containing n objects. The set H denotes

the subgroup of S,. consisting of all k!(n!)k permutations with the property that if

h E H then ha and hb belong to the same system whenever a and b belong to the

same system. In other words, H transforms systems into systems.

The following theorems from [Ref. 12] are stated with proof.
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Theorem A.1 (van Aardenne-Ehrenfest and de Bruijn) H is a VD-set

in Sm.

Let R denote the set of all permutations in Sm with the property that the n

objects of each system are transformed into objects of n different systems. In other

words, if r E R where a and b belong to the same system, then ra and rb belong to

different systems. It can also be shown that R is a V-set in Sm.

Let D = (V,A) be a regular Eulerian digraph where in(x) = out(x) = a,

V, E V. Two cycles are considered identical whenever the arcs of the first cycle are

a cyclic permutation of the arcs of the second.

The number of Eu' ri n cycles in D is denoted by lIDII. A permutation P

of the set of arcs of A = (ai,...,ag) is called conservative (with respect to D), if

Pai = ai always implies that a, is adjacent to aj. Let Eo be an arbitrary but fixed

Eulerian cycle in D. The set of all conservative permutations of D can be represented

as BE., where B = B1 x ... x B1vI is the group of all permutations where Bi is

the group of permutations that permute arcs having the same initial vertex vi, but

leave invariant all other arcs. Therefore, any Eulerian cycle determines a conservative

permutation and any conservative permutation determines an Eulerian cycle. Hence,

JJDJJ = IIBEoII. Let B1,..., Blv, be subsets of Bl,...,B~v, respectively, where

B = B, x ... x BivI.

The set of Eulerian cycles defined by B, denoted BIIDll, are the cycles corresponding
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to a permutation bEo where b E B and Eo is a fixed conservative permutation. Using

this notation, we have

JID111 --a JID11, BJJDjI ="-IBEolll.

If for each i, Bi is a V-set in Bi, then B is called normal. The following result

provides a relationship between the set of all conservative permutations and a subset

of consvervative permutations.

Theorem A.2 (van Aardenne-Ehrenfest and de Bruijn) If B is normal,

then

BIIDII sOIDII
JBI - JIBI

where IBI and 1B1 denote the number of elements of B and B, respectively.

Recall that D = (V, A) is an Eulerian regular directed graph with IV[ vertices

and JAI arcs. If in(vi) = a for 1 < i < IVI, then IAI = acVI.

Let A be a positive integer. Then by D(\) we denote the graph that arises from

D if we replace any arc (x,y) by A arcs (x,y). We see that D(\) has IvI vertices and

AlA! = Aa1VI arcs. The set of A arcs arising from each arc in D are said to form a

bundle.

We consider 3 categories of cycles that traverse every arc in D(\). Each of

these categories is normal in the sense described above.

1. Bi = Bi, where Bi is the permutation group of order ((A\)!).
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2. Bi = Hi, where H, is the subset of Bi that associates bundles with bundles.

That is, if a and b are in the same bundle, then ha and hb are in the same bundle

where h E Hi. The order of Hi is a!(A!)'.

3. B, = RP, where A is the subset of B, that associates the arcs of each bundle

with a different bundles. That is, if a and b are in the same bundle, then ra and rb

are in different bundles where r E RA. The order of R, is fRI.

We have by Theorem A.2

oLIID)ll HIID(A)Il RIID(,)Il

((A,\)!)"v' (a!)lVl(A!)IEI IRI

Recall that BIID(\)Il = IID(,)<ll. The number HIID(,)Il is proportional to the

number IIDI 1. It can be seen that each Eulerian cycle of D arises from A-l(A!)IVI

different cycles in ID() I•. Hence,

HI1D(A)II = A\-(A!)IVIlIDII.

By Equation A.1 we have,

IID(A)Ilh = A-1 IIDII1 (( ) o! (A.2)

A a-cycle in D is a cycle containing each edge of D exactly a times. A a,-cycle

is called restricted if it happens that any pair of adjacent edges of D appears just once

in the cycle. The number of different a-cycles can be determined from Equation A.2.

A difficulty arises from the fact that a a!-cycle may be periodic of period IEId, where

d is a divisor of a. Let c(p) denote the number of p-cycles in D with the period IEIp.
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For each p-cycle in D there arise (p!)IEI Eulerian cycles in D(,). It follows immediately

that

IID()III d = c(dl(p! )IE. (A.3)
dip

From the Mobius inversion formula,

c(p) = E dA (ý) (d!fIEIIID(d)Ijl, (A.4)
dip p d

and the number of unrestricted p-cycles equals

>2c(d) = I -E (d!)- E~dID(d)ll, (A.5)
dip P dip (!I~IDdIl

where 4 is Euler's totient function. Evaluating JID(p)IIl using Equation A.2, the

number of unrestricted p-cycles in a a-regular directed graph D = (V, A) is given by

where 4 is the Euler's totient function and the summation is extended over all divisors

of p.
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APPENDIX B. A DIGRAPH ISOMORPHIC
TOBn

A friend is ... a second self.

Cicero

In the Good - de Bruijn digraph B, each vertex is labeled with a unique

binary n-tuple. There is an arc (x, y) from vertex x = (xo, xl,... ,I Xn1 ) to ver-

tex y = (Yo, Y,...,Yn.-1) in B, if and only if (XIX 2,...,Xn- 1 ) = (YO,Yl,... ,yn-2).

Equivalently, we can label each vertex x = (XI, X2,..., - , - ) with the unique integer
n-1

i that is the decimal representation of x defined by i = x xj2'-'-. There is an arc
j=O

from vertex i to vertex j if and only if j E {2i, 2i + 1} mod 2n.

We define Bn,-(k+l) for 0 < k + I < n, to be a 2-regular directed graph with

2 n-(k+1) vertices and 2 nk arcs. We label each vertex in B-'-.-(k+) with a unique 2 k+1

element set

{ 2 k+1i, 2k++i + 1.... , 2 k+1i + 2 (k+l) - 1} where 0 < i < 2n-(k+1) - 1.

There is an arc from the vertex {2 k+ i, 2 k+1i + 1,..., 2k+i + 2(k+1) - 1} to the vertex

{2 k+lj, 2 k+lj + 1,..., 2 k+li + 2 (k+') - 1} in Bn-(k+l) if and only if

2v mod 2 E {( 2 1+ij),(2 k+'j + 1),..., 2 k+lj 2 k+) -+ 2

where•v E {2 k+h1i, 2 kh+i + 1, 2 '+i + 2(k+1) -
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Let V(B') be the set of vertices in BA where the vertices are represented by

the integers i where 0 < i < 2n - 1. Let V(BR.-(k+l)) denote the set of vertices in

Bn-(k+l). Furthermore, let A(Bn) and A(BR) denote the set of arcs in Bn and H9n,

respectively.

Lemma B.1 The function 0: V(Bm) -" V('B,-(k+l)) for m = n - (k + 1), is

defined by the rule

vO = {2 k+lv, 2 k+lv + 1,..., 2 k+lV + 2(k+1) - 1} mod 2"n.

Then 0: V(Bm) -- V(Rn-(k+l)) is one to one.

Proof: Let ij E V(Bm), with i 0 j. Then

i 0 = {2 k+1i, 2 k+1i + ,..., 2 k+1i + 2 (k+) - 1} rmod 2n, and

jO = {2 k+1j, 2 k+lj + 1,..., 2 k+1j + 2 (k+1) - 1} mod 2n.

Assume io = jo. Since 2' > 2', it follows immediately that i = j. Therefore,

q6 is 1-1. U

Lemma B.2 For the rule 4 as defined in Lemma B.1, 0: V(Bn) --+ V(,-(k+l))

is onto.

Proof: Let {2 k+li, 2 +i + ,..., 2 +i + 2(k+l) - 1} mod 2n E V(BR). Then

{2k+li, 2 k+Ii + 1,..., 2 k+1i + 2 (k+1)-4} mod 2n = i(O). U
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Lemma B.3 The function 0: A(B,) -+ A(B,,_(k+l)) for m = n - (k + 1), is

defined by the rule

(i,j)O= ({ 2 +li, 2k+i+ 1 .. , 2k+li + 2(k+1) - 1}mod 2",

S2k+lj, 2k+lj + 1,... , 2 k+lj + 2 (k+ - 1} mod 2"),

where (i,j) E A(Bn) if and only if (i(@),j(O)) E A(Bn-(k+i)). Then 0:

A(B,) -- A(BR-(A(+l)) is one to one.

Proof: Let (i,j),(i',j') E A(B,). with (i,j) # (i',j'). Then

(i,j)O ({ 2 k+1i, 2 k+1i + 1,..., 2 k+li + 2(k+1) - 1} mod 2",

{ 2k+j, 2k+lj + 1,..., 2k+lj + 2(k+1) 1- } mod 2")

and

(i',j')O = ({ 2"+1 i', 2k+1i'+ ... ,2k+4 i' + 2 (k+1) - 1},

{ 2k+lj, 2 k+lji + 1,...,2k'+jl + 2(k+1) - 1} mod 2").

Assume (i,j)O = (i',j')O. It follows immediately that (i,j) = (i',j'). There-

fore, 0 is 1-1. U

Lemma B.4 For the rule 0 as defined in Lemma B.3, 0: A(B,) -- A(Rn-(k+I))

is onto.
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Proof: Let

({ 2 k+li, 2 k+i + 1,..., 2 k+li + 2(k+') - 1}1 od 2",

{ 2k+j, 2 k+lj + 1,... , 2 k+1J + 2 (k+1) - 1} mod 2") E V(BR,_ik+1).

Then

({ 2 k+li, 2 k+1i + 1,...,2k+1i +2 (k+1) 1} mod 2",

{ 2 +j, 2k+lj + 1,...,2k+lj + 2 (k+1) - 1} mod 2") = (1,j)(0).

Theorem B.5 The digraphs Bm and R,-(k+l) for m = n - (k + 1), are iso-

morphic.

Proof: The function 0: V(B,) -+ V(B,-(k+l)) defined by the rule

v4 = {2k+'v, 2 + + 1,... ,2 k+ +2 (k+1 - 1} mod 2"

and the function 0: A(B,) -+ A(-,,) defined by the rule

(i,j)O= ({ 2 k+1i, 2 k+li + ,..., 2 k+1i + 2 (k+1 -- 1},

{ 2 k+j,2"+'j + 1,. .. , 2 k+lj + 2 (k+1) - 1} mod 2")

are bijections. It follows by definition that the digraphs Bn and B_-(k+l) are

isomorphic. U
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Figure 21. Good - de Bruijn digraphs B4 , B4-(o+i),ff4-(I+I), and 114-(2+1)
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